To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Genetic and lifestyle ris… - University of Gothenburg, Sweden Till startsida
To content Read more about how we use cookies on

Contact form


Note! If you want an answer on a question you must specify your email address

Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting

Journal article
Authors G. Chauhan
H. H. H. Adams
C. L. Satizabal
J. C. Bis
A. Teumer
M. Sargurupremraj
E. Hofer
S. Trompet
S. Hilal
A. V. Smith
X. Q. Jian
R. Malik
M. Traylor
S. L. Pulit
P. Amouyel
B. Mazoyer
Y. C. Zhu
S. Kaffashian
S. Schilling
G. W. Beecham
T. J. Montine
G. D. Schellenberg
O. Kjartansson
V. Gudnason
D. S. Knopman
M. E. Griswold
B. G. Windham
R. F. Gottesman
T. H. Mosley
R. Schmidt
Y. Saba
H. Schmidt
F. Takeuchi
S. Yamaguchi
T. Nabika
N. Kato
K. B. Rajan
N. T. Aggarwal
P. L. De Jager
D. A. Evans
B. M. Psaty
J. I. Rotter
K. Rice
O. L. Lopez
J. M. Liao
C. Chen
C. Y. Cheng
T. Y. Wong
M. K. Ikram
S. J. van der Lee
N. Amin
V. Chouraki
A. L. DeStefano
H. J. Aparicio
J. R. Romero
P. Maillard
C. DeCarli
J. M. Wardlaw
M. D. V. Hernandez
M. Luciano
D. Liewald
I. J. Deary
J. M. Starr
M. E. Bastin
S. M. Maniega
P. E. Slagboom
M. Beekman
J. Deelen
H. W. Uh
R. Lemmens
H. Brodaty
M. J. Wright
D. Ames
G. B. Boncoraglio
J. C. Hopewell
A. H. Beecham
S. H. Blanton
C. B. Wright
R. L. Sacco
W. Wen
A. Thalamuthu
N. J. Armstrong
E. Chong
P. R. Schofield
J. B. Kwok
J. van der Grond
D. J. Stott
I. Ford
J. W. Jukema
M. W. Vernooij
A. Hofman
A. G. Uitterlinden
A. van der Lugt
K. Wittfeld
H. J. Grabe
N. Hosten
B. von Sarnowski
U. Volker
C. Levi
J. Jimenez-Conde
P. Sharma
C. L. M. Sudlow
J. Rosand
D. Woo
J. W. Cole
J. F. Meschia
A. Slowik
V. Thijs
A. Lindgren
O. Melander
R. P. Grewal
T. Rundek
K. Rexrode
P. M. Rothwell
D. K. Arnett
Christina Jern
J. A. Johnson
O. R. Benavente
S. Wasssertheil-Smoller
J. M. Lee
Q. Wong
B. D. Mitchell
S. S. Rich
P. F. McArdle
M. I. Geerlings
Y. van der Graaf
P. I. W. de Bakker
F. W. Asselbergs
V. Srikanth
R. Thomson
R. McWhirter
C. Moran
M. Callisaya
T. Phan
L. C. A. Rutten-Jacobs
S. Bevan
C. Tzourio
K. A. Mather
P. S. Sachdev
C. M. van Duijn
B. B. Worrall
M. Dichgans
S. J. Kittner
H. S. Markus
M. A. Ikram
M. Fornage
L. J. Launer
S. Seshadri
W. T. Longstreth
S. Debette
G. N. Isgc Metastroke Adgc Charge Consortium Stroke Genetics Network Si
Published in Neurology
Volume 92
Issue 5
Pages E486-E503
ISSN 0028-3878
Publication year 2019
Published at Institute of Biomedicine
Pages E486-E503
Language en
Keywords genome-wide association, matter hyperintensity volume, small vessel, disease, mendelian randomization, ischemic-stroke, blood-pressure, silent, metaanalysis, polymorphisms, insights, Neurosciences & Neurology
Subject categories Neurosciences


ObjectiveTo explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts.MethodsWe performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n = 20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI.ResultsThe mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 x 10(-8); and LINC00539/ZDHHC20, p = 5.82 x 10(-9). Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p([BI]) = 9.38 x 10(-25); p([SSBI]) = 5.23 x 10(-14) for hypertension), smoking (p([BI]) = 4.4 x 10(-10); p([SSBI]) = 1.2 x 10(-4)), diabetes (p([BI]) = 1.7 x 10(-8); p([SSBI]) = 2.8 x 10(-3)), previous cardiovascular disease (p([BI]) = 1.0 x 10(-18); p([SSBI]) = 2.3 x 10(-7)), stroke (p([BI]) = 3.9 x 10(-69); p([SSBI]) = 3.2 x 10(-24)), and MRI-defined white matter hyperintensity burden (p([BI]) = 1.43 x 10(-157); p([SSBI]) = 3.16 x 10(-106)), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p 0.0022), without indication of directional pleiotropy.ConclusionIn this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI.

Page Manager: Webmaster|Last update: 9/11/2012

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?