To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

A probabilistic approach … - University of Gothenburg, Sweden Till startsida
To content Read more about how we use cookies on

A probabilistic approach to soil layer and bedrock-level modelling for risk assessment of groundwater drawdown induced land subsidence

Journal article
Authors Jonas Sundell
Lars Rosén
Tommy Norberg
Ezra Haaf
Published in Engineering Geology
Volume 203
Pages 126-139
ISSN 0013-7952
Publication year 2016
Published at Department of Earth Sciences
Department of Mathematical Sciences, Mathematical Statistics
Pages 126-139
Language en
Keywords Decision support; Groundwater drawdown induced subsidence; Probabilistic bedrock level model; Probabilistic soil strata model; Risk assessment
Subject categories Earth and Related Environmental Sciences, Geosciences, Multidisciplinary, Hydrology, Water in nature and society, Geotechnical Engineering, Water Engineering


Sub-surface construction in urban areas generally involves drainage of groundwater, which can induce subsidence in soil deposits. Knowledge of where compressible sediments are located and how thick these are is essential for estimating subsidence risk. A probabilistic method for coupled bedrock-level and soil-layer modeling to detect compressible sediments is presented. The method is applied in an area in central Stockholm, where clay is the compressible sediment layer. First, a bedrock-level model was constructed from three sources of information: (a) geotechnical drillings reaching the bedrock; (b) drillings not reaching the bedrock; and (c) mapped bedrock outcrops. Input data for the probabilistic bedrock-level model was generated by a stepwise Kriging procedure. Second, a three layer soil model was constructed, including the following materials: (a) coarse grained post glacial and filling material below the ground surface; (b) glacial and post-glacial clays; and (c) coarse grained glaciofluvial and glacial till deposits above the bedrock. Layer thicknesses were transformed to proportions of the total soil thickness. Since Kriging requires data to be normally distributed, the proportions were transformed from proportions (P) to standard normal quantiles (z). In each iteration of a Monte-Carlo simulation, a spatial distribution of the bedrock level was simulated together with the transformed values for the soil-layer proportions. From the iterations, the probability density of the clay thickness (compressible sediments) at each grid cell was calculated. The results of the case study map the expected value (mean) and the 95th percentile of the probability of compressible sediments at specific locations. The resulting model is geologically realistic and validated through a cross-validation procedure in order to be in good agreement with a reference dataset. The case study showed that the method can efficiently handle large amounts of data and requires little manual adjustment. Moreover, the mapped results can provide useful decision support when planning risk-reducing measures and when communicating with stakeholders. Although this novel method is developed for risk assessment of groundwater drawdown induced subsidence, it is useful for other applications involving spatial soil strata modeling.

Page Manager: Webmaster|Last update: 9/11/2012

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?