To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Long-term effects of tota… - University of Gothenburg, Sweden Till startsida
To content Read more about how we use cookies on

Long-term effects of total and source-specific particulate air pollution on incident cardiovascular disease in Gothenburg, Sweden

Journal article
Authors Leo Stockfelt
Eva M. Andersson
Peter Molnár
L. Gidhagen
D. Segersson
Annika Rosengren
Lars Barregård
Gerd Sällsten
Published in Environmental Research
Volume 158
Pages 61-71
ISSN 0013-9351
Publication year 2017
Published at Institute of Medicine, School of Public Health and Community Medicine
Institute of Medicine, Department of Public Health and Community Medicine, Section of Occupational and environmental medicine
Institute of Medicine, Department of Molecular and Clinical Medicine
Pages 61-71
Language en
Keywords Air pollution, Cardiovascular disease, Particulate matter, Ischemic heart disease, Cohort studies, coronary-heart-disease, myocardial-infarction, epidemiologic evidence, risk-factors, follow-up, mortality, exposure, cohort, association, health, Environmental Sciences & Ecology, Public, Environmental & Occupational, Health
Subject categories Health Sciences


Background and aims: Long-term exposure to air pollution increases cardiopulmonary morbidity and mortality, but it is not clear which components of air pollution are the most harmful, nor which time window of exposure is most relevant. Further studies at low exposure levels have also been called for. We analyzed two Swedish cohorts to investigate the effects of total and source-specific particulate matter (PM) on incident cardiovascular disease for different time windows of exposure. Methods: Two cohorts initially recruited to study predictors of cardiovascular disease (the PPS cohort and the GOT-MONICA cohort) were followed from 1990 to 2011. We collected data on residential addresses and assigned each individual yearly total and source-specific PM and Nitrogen Oxides (NO) exposures based on dispersion models. Using multivariable Cox regression models with time-dependent exposure, we studied the association between three different time windows (lag 0, lag 1-5, and exposure at study start) of residential PM and NO exposure, and incidence of ischemic heart disease, stroke, heart failure and atrial fibrillation. Results and discussion: During the study period, there were 2266 new-onset cases of ischemic heart disease, 1391 of stroke, 925 of heart failure and 1712 of atrial fibrillation. The majority of cases were in the PPS cohort, where participants were older. Exposure levels during the study period were moderate (median: 13 mu g/m(3) for PM10 and 9 mu g/m(3) for PM2.5), and similar in both cohorts. Road traffic and residential heating were the largest local sources of PM air pollution, and long distance transportation the largest PM source in total. In the PPS cohort, there were positive associations between PM in the last five years and both ischemic heart disease (HR: 1.24 [95% CI: 0.98-1.59] per 10 mu g/m(3) of PM10, and HR: 1.38 [95% CI: 1.08-1.77] per 5 mu g/m(3) of PM2.5) and heart failure. In the GOT-MONICA cohort, there were positive but generally non-significant associations between PM and stroke (HR: 1.48 [95% CI: 0.88-2.49] per 10 mu g/m(3) of PM10, and HR: 1.50 [95% CI: 0.90-2.51] per 5 mu g/m(3) of PM2.5, in the last five years). Effect estimates were stronger for women, non-smokers, and higher socioeconomic classes. Exposure in the last five years seemed to be more strongly associated with outcomes than other exposure time windows. Associations between source-specific PM air pollution and outcomes were mixed and generally weak. High correlations between the main pollutants limited the use of multi-pollutant models. Conclusions: The main PM air pollutants were associated with ischemic heart disease and stroke (in women) at the relatively low exposure levels in Gothenburg, Sweden. The associations tended to be stronger for women than for men, for non-smokers than for smokers, and for higher socioeconomic classes than for lower. The associations could not be attributed to a specific PM source or type, and differed somewhat between the two cohorts. The results of this study confirm that further efforts to reduce air pollution exposure should be undertaken in Sweden to reduce the negative health effects in the general population.

Page Manager: Webmaster|Last update: 9/11/2012

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?