To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

The fission yeast FHIT ho… - University of Gothenburg, Sweden Till startsida
To content Read more about how we use cookies on

The fission yeast FHIT homolog affects checkpoint control of proliferation and is regulated by mitochondrial electron transport.

Journal article
Authors Johanna J Sjölander
Per Sunnerhagen
Published in Cell Biology International
ISSN 1095-8355
Publication year 2019
Published at Department of Chemistry and Molecular Biology
Language en
Subject categories Cell and molecular biology, Molecular biology, Cell Biology


Genetic analysis has strongly implicated human FHIT (Fragile Histidine Triad) as a tumor suppressor gene, being mutated in a large proportion of early stage cancers. The functions of the FHIT protein have however remained elusive. Here, we investigated aph1+ , the fission yeast homolog of FHIT, for functions related to checkpoint control and oxidative metabolism. In sublethal concentrations of DNA damaging agents, aph1Δ mutants grew with a substantially shorter lag phase. In aph1Δ mutants carrying a hypomorphic allele of cds1 (fission yeast homolog of Chk2), in addition increased chromosome fragmentation and missegregation were found. We also found that under hypoxia or impaired electron transport function, the Aph1 protein level was strongly depressed. Previously FHIT has been linked to regulation of the human 9-1-1 checkpoint complex constituted by Hus1, Rad1, and Rad9. In Schizosaccharomyces pombe the levels of all three 9-1-1 proteins are all downregulated by hypoxia in similarity with Aph1. Moreover, deletion of the aph1+ gene reduced the Rad1 protein level, indicating a direct relationship between these two proteins. We conclude that the fission yeast FHIT homolog has a role in modulating DNA damage checkpoint function, possibly through an effect on the 9-1-1 complex, and that this effect may be critical under conditions of limiting oxidative metabolism and reoxygenation. This article is protected by copyright. All rights reserved.

Page Manager: Webmaster|Last update: 9/11/2012

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?