To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Genomic evidence of neo-s… - University of Gothenburg, Sweden Till startsida
Sitemap
To content Read more about how we use cookies on gu.se

Genomic evidence of neo-sex chromosomes in the eastern yellow robin

Journal article
Authors H. M. Gan
S. Falk
Hernán E. Morales
C. M. Austin
P. Sunnucks
A. Pavlova
Published in Gigascience
Volume 8
Issue 9
ISSN 2047-217X
Publication year 2019
Published at Department of marine sciences
Language en
Links dx.doi.org/10.1093/gigascience/giz1...
Keywords eastern yellow robin, Eopsaltria australis, passerine, songbird, genome, sex chromosome, W, read alignment, selection, suite, Life Sciences & Biomedicine
Subject categories Evolutionary Biology

Abstract

Background: Understanding sex-biased natural selection can be enhanced by access to well-annotated chromosomes including ones inherited in sex-specific fashion. The eastern yellow robin (EYR) is an endemic Australian songbird inferred to have experienced climate-driven sex-biased selection and is a prominent model for studying mitochondrial-nuclear interactions in the wild. However, the lack of an EYR reference genome containing both sex chromosomes (in birds, a female bearing Z and W chromosomes) limits efforts to understand the mechanisms of these processes. Here, we assemble the genome for a female EYR and use low-depth (10x) genome resequencing data from 19 individuals of known sex to identify chromosome fragments with sex-specific inheritance. Findings: MaSuRCA hybrid assembly using Nanopore and Illumina reads generated a 1.22-Gb EYR genome in 20,702 scaffolds (94.2% BUSCO completeness). Scaffolds were tested for W-linked (female-only) inheritance using a k-mer approach, and for Z-linked inheritance using median read-depth test in male and female reads (read-depths must indicate haploid female and diploid male representation). This resulted in 2,372 W-linked scaffolds (total length: 97,872,282 bp, N50: 81,931 bp) and 586 Z-linked scaffolds (total length: 121,817,358 bp, N50: 551,641 bp). Anchoring of the sex-linked EYR scaffolds to the reference genome of a female zebra finch revealed 2 categories of sex-linked genomic regions. First, 653 W-linked scaffolds (25.7 Mb) were anchored to the W sex chromosome and 215 Z-linked scaffolds (74.4 Mb) to the Z. Second, 1,138 W-linked scaffolds (70.9 Mb) and 179 Z-linked scaffolds (51.0 Mb) were anchored to a large section (coordinates similar to 5 to similar to 60 Mb) of zebra finch chromosome 1A. The first similar to 5 Mb and last similar to 14 Mb of the reference chromosome 1A had only autosomally behaving EYR scaffolds mapping to them. Conclusions: We report a female (W chromosome-containing) EYR genome and provide genomic evidence for a neo-sex (neo-W and neo-Z) chromosome system in the EYR, involving most of a large chromosome (1A) previously only reported to be autosomal in passerines.

Page Manager: Webmaster|Last update: 9/11/2012
Share:

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?