To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Individual Risk Predictio… - University of Gothenburg, Sweden Till startsida
Sitemap
To content Read more about how we use cookies on gu.se

Individual Risk Prediction for Sight-Threatening Retinopathy of Prematurity Using Birth Characteristics

Journal article
Authors Aldina Pivodic
Anna-Lena Hård
Chatarina Löfqvist
Lois E.H. Smith
Carolyn Wu
Marie Christine Bründer
Wolf A. Lagrèze
Andreas Stahl
Gerd Holmström
Kerstin Albertsson-Wikland
Helena Johansson
Staffan Nilsson
Ann Hellström
Published in JAMA Ophthalmology
Volume 138
Issue 1
Pages 21-29
ISSN 2168-6165
Publication year 2020
Published at Department of Mathematical Sciences
Institute of Medicine, School of Public Health and Community Medicine
Institute of Neuroscience and Physiology
Institute of Neuroscience and Physiology, Department of Physiology
Institute of Biomedicine
Institute of Health and Care Sciences
Pages 21-29
Language en
Links doi.org/10.1001/jamaophthalmol.2019...
Subject categories Ophthalmology

Abstract

Importance: To prevent blindness, repeated infant eye examinations are performed to detect severe retinopathy of prematurity (ROP), yet only a small fraction of those screened need treatment. Early individual risk stratification would improve screening timing and efficiency and potentially reduce the risk of blindness. Objectives: To create and validate an easy-to-use prediction model using only birth characteristics and to describe a continuous hazard function for ROP treatment. Design, Setting, and Participants: In this retrospective cohort study, Swedish National Patient Registry data from infants screened for ROP (born between January 1, 2007, and August 7, 2018) were analyzed with Poisson regression for time-varying data (postnatal age, gestational age [GA], sex, birth weight, and important interactions) to develop an individualized predictive model for ROP treatment (called DIGIROP-Birth [Digital ROP]). The model was validated internally and externally (in US and European cohorts) and compared with 4 published prediction models. Main Outcomes and Measures: The study outcome was ROP treatment. The measures were estimated momentary and cumulative risks, hazard ratios with 95% CIs, area under the receiver operating characteristic curve (hereinafter referred to as AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Results: Among 7609 infants (54.6% boys; mean [SD] GA, 28.1 [2.1] weeks; mean [SD] birth weight, 1119 [353] g), 442 (5.8%) were treated for ROP, including 142 (40.1%) treated of 354 born at less than 24 gestational weeks. Irrespective of GA, the risk for receiving ROP treatment increased during postnatal weeks 8 through 12 and decreased thereafter. Validations of DIGIROP-Birth for 24 to 30 weeks' GA showed high predictive ability for the model overall (AUC, 0.90 [95% CI, 0.89-0.92] for internal validation, 0.94 [95% CI, 0.90-0.98] for temporal validation, 0.87 [95% CI, 0.84-0.89] for US external validation, and 0.90 [95% CI, 0.85-0.95] for European external validation) by calendar periods and by race/ethnicity. The sensitivity, specificity, PPV, and NPV were numerically at least as high as those obtained from CHOP-ROP (Children's Hospital of Philadelphia-ROP), OMA-ROP (Omaha-ROP), WINROP (weight, insulinlike growth factor 1, neonatal, ROP), and CO-ROP (Colorado-ROP), models requiring more complex postnatal data. Conclusions and Relevance: This study validated an individualized prediction model for infants born at 24 to 30 weeks' GA, enabling early risk prediction of ROP treatment based on birth characteristics data. Postnatal age rather than postmenstrual age was a better predictive variable for the temporal risk of ROP treatment. The model is an accessible online application that appears to be generalizable and to have at least as good test statistics as other models requiring longitudinal neonatal data not always readily available to ophthalmologists.

Page Manager: Webmaster|Last update: 9/11/2012
Share:

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?