To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Approaching the taxonomic… - University of Gothenburg, Sweden Till startsida
Sitemap
To content Read more about how we use cookies on gu.se

Approaching the taxonomic affiliation of unidentified sequences in public databases – an example from the mycorrhizal fungi

Journal article
Authors R. Henrik Nilsson
Erik Kristiansson
Martin Ryberg
Karl-Henrik Larsson
Published in BMC Bioinformatics
Volume 6
Issue 178
Publication year 2005
Published at Botanical Institute, Systematic Botany
Department of Mathematical Sciences, Mathematical Statistics
Botanical Institute
Language en
Links dx.doi.org/10.1186/1471-2105-6-178
https://gup.ub.gu.se/file/122516
Subject categories Other Biological Topics

Abstract

Background During the last few years, DNA sequence analysis has become one of the primary means of taxonomic identification of species, particularly so for species that are minute or otherwise lack distinct, readily obtainable morphological characters. Although the number of sequences available for comparison in public databases such as GenBank increases exponentially, only a minuscule fraction of all organisms have been sequenced, leaving taxon sampling a momentous problem for sequence-based taxonomic identification. When querying GenBank with a set of unidentified sequences, a considerable proportion typically lack fully identified matches, forming an ever-mounting pile of sequences that the researcher will have to monitor manually in the hope that new, clarifying sequences have been submitted by other researchers. To alleviate these concerns, a project to automatically monitor select unidentified sequences in GenBank for taxonomic progress through repeated local BLAST searches was initiated. Mycorrhizal fungi – a field where species identification often is prohibitively complex – and the much used ITS locus were chosen as test bed. Results A Perl script package called emerencia is presented. On a regular basis, it downloads select sequences from GenBank, separates the identified sequences from those insufficiently identified, and performs BLAST searches between these two datasets, storing all results in an SQL database. On the accompanying web-service http://emerencia.math.chalmers.se webcite, users can monitor the taxonomic progress of insufficiently identified sequences over time, either through active searches or by signing up for e-mail notification upon disclosure of better matches. Other search categories, such as listing all insufficiently identified sequences (and their present best fully identified matches) publication-wise, are also available. Discussion The ever-increasing use of DNA sequences for identification purposes largely falls back on the assumption that public sequence databases contain a thorough sampling of taxonomically well-annotated sequences. Taxonomy, held by some to be an old-fashioned trade, has accordingly never been more important. emerencia does not automate the taxonomic process, but it does allow researchers to focus their efforts elsewhere than countless manual BLAST runs and arduous sieving of BLAST hit lists. The emerencia system is available on an open source basis for local installation with any organism and gene group as targets.

Page Manager: Webmaster|Last update: 9/11/2012
Share:

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?