Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Prediction of faults-slip… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Prediction of faults-slip-through in large software projects: An empirical evaluation

Artikel i vetenskaplig tidskrift
Författare Richard Torkar
Wasif Afzal
Robert Feldt
Tony Gorschek
Publicerad i Software quality journal
Volym 22
Nummer/häfte 1
Sidor 51-86
ISSN 0963-9314
Publiceringsår 2014
Publicerad vid Institutionen för data- och informationsteknik (GU)
Sidor 51-86
Språk en
Länkar dx.doi.org/10.1007/s11219-013-9205-...
Ämnesord Prediction, empirical, faults-slip-through, search-based
Ämneskategorier Programvaruteknik

Sammanfattning

A large percentage of the cost of rework can be avoided by finding more faults earlier in a software test process. Therefore, determination of which software test phases to focus improvement work on has considerable industrial interest. We evaluate a number of prediction techniques for predicting the number of faults slipping through to unit, function, integration, and system test phases of a large industrial project. The objective is to quantify improvement potential in different test phases by striving toward finding the faults in the right phase. The results show that a range of techniques are found to be useful in predicting the number of faults slipping through to the four test phases; however, the group of search-based techniques (genetic programming, gene expression programming, artificial immune recognition system, and particle swarm optimization–based artificial neural network) consistently give better predictions, having a representation at all of the test phases. Human predictions are consistently better at two of the four test phases. We conclude that the human predictions regarding the number of faults slipping through to various test phases can be well supported by the use of search-based techniques. A combination of human and an automated search mechanism (such as any of the search-based techniques) has the potential to provide improved prediction results.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?