Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Overcoming the Equivalent… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Overcoming the Equivalent Mutant Problem: A Systematic Literature Review and a Comparative Experiment of Second Order Mutation

Artikel i vetenskaplig tidskrift
Författare L. Madeyski
W. Orzeszyna
Richard Torkar
M. Jozala
Publicerad i Ieee Transactions on Software Engineering
Volym 40
Nummer/häfte 1
Sidor 23-42
ISSN 0098-5589
Publiceringsår 2014
Publicerad vid Institutionen för data- och informationsteknik (GU)
Sidor 23-42
Språk en
Länkar dx.doi.org/10.1109/tse.2013.44
Ämnesord Mutation testing, equivalent mutant problem, higher order mutation, second order mutation, GUIDELINES, MILLO RA, 1978, COMPUTER, V11, P34
Ämneskategorier Data- och informationsvetenskap, Elektroteknik och elektronik

Sammanfattning

Context. The equivalent mutant problem (EMP) is one of the crucial problems in mutation testing widely studied over decades. Objectives. The objectives are: to present a systematic literature review (SLR) in the field of EMP; to identify, classify and improve the existing, or implement new, methods which try to overcome EMP and evaluate them. Method. We performed SLR based on the search of digital libraries. We implemented four second order mutation (SOM) strategies, in addition to first order mutation (FOM), and compared them from different perspectives. Results. Our SLR identified 17 relevant techniques (in 22 articles) and three categories of techniques: detecting (DEM); suggesting (SEM); and avoiding equivalent mutant generation (AEMG). The experiment indicated that SOM in general and JudyDiffOp strategy in particular provide the best results in the following areas: total number of mutants generated; the association between the type of mutation strategy and whether the generated mutants were equivalent or not; the number of not killed mutants; mutation testing time; time needed for manual classification. Conclusions. The results in the DEM category are still far from perfect. Thus, the SEM and AEMG categories have been developed. The JudyDiffOp algorithm achieved good results in many areas.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?