Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

The catalytic aspartate i… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

The catalytic aspartate is protonated in the Michaelis complex formed between trypsin and an in vitro evolved substrate-like inhibitor: a refined mechanism of serine protease action.

Artikel i vetenskaplig tidskrift
Författare Weixiao Yuan Wahlgren
Gábor Pál
József Kardos
Pálma Porrogi
Borbála Szenthe
András Patthy
László Gráf
Gergely Katona
Publicerad i The Journal of biological chemistry
Volym 286
Nummer/häfte 5
Sidor 3587-96
ISSN 1083-351X
Publiceringsår 2011
Publicerad vid Institutionen för kemi
Sidor 3587-96
Språk en
Länkar dx.doi.org/10.1074/jbc.M110.161604
Ämnesord Animals, Aspartic Acid, chemistry, Catalysis, Catalytic Domain, Crystallography, X-Ray, Insect Proteins, chemistry, genetics, metabolism, Mutation, Missense, Protein Binding, Protein Conformation, Protons, Serine Proteases, chemistry, Trypsin, chemistry, metabolism
Ämneskategorier Strukturbiologi, Kvantkemi, Biokemi

Sammanfattning

The mechanism of serine proteases prominently illustrates how charged amino acid residues and proton transfer events facilitate enzyme catalysis. Here we present an ultrahigh resolution (0.93 Å) x-ray structure of a complex formed between trypsin and a canonical inhibitor acting through a substrate-like mechanism. The electron density indicates the protonation state of all catalytic residues where the catalytic histidine is, as expected, in its neutral state prior to the acylation step by the catalytic serine. The carboxyl group of the catalytic aspartate displays an asymmetric electron density so that the O(δ2)-C(γ) bond appears to be a double bond, with O(δ2) involved in a hydrogen bond to His-57 and Ser-214. Only when Asp-102 is protonated on O(δ1) atom could a density functional theory simulation reproduce the observed electron density. The presence of a putative hydrogen atom is also confirmed by a residual mF(obs) - DF(calc) density above 2.5 σ next to O(δ1). As a possible functional role for the neutral aspartate in the active site, we propose that in the substrate-bound form, the neutral aspartate residue helps to keep the pK(a) of the histidine sufficiently low, in the active neutral form. When the histidine receives a proton during the catalytic cycle, the aspartate becomes simultaneously negatively charged, providing additional stabilization for the protonated histidine and indirectly to the tetrahedral intermediate. This novel proposal unifies the seemingly conflicting experimental observations, which were previously seen as either supporting the charge relay mechanism or the neutral pK(a) histidine theory.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?