Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän

Relational Features in Fi… - Göteborgs universitet Till startsida
Till innehåll Läs mer om hur kakor används på gu.se

Relational Features in Fine-grained Opinion Analysis

Artikel i vetenskaplig tidskrift
Författare Richard Johansson
Alessandro Moschitti
Publicerad i Computational Linguistics
Volym 39
Nummer/häfte 3
Sidor 473-509
ISSN 0891-2017
Publiceringsår 2013
Publicerad vid Institutionen för svenska språket
Sidor 473-509
Språk en
Länkar dx.doi.org/10.1162/COLI_a_00141
Ämnesord datorlingvistik, språkteknologi, åsikter, informationsextraktion, informationssökning, maskininlärning
Ämneskategorier Språkteknologi (språkvetenskaplig databehandling), Övrig informationsteknik


Fine-grained opinion analysis often makes use of linguistic features but typically does not take the interaction between opinions into account. This article describes a set of experiments that demonstrate that relational features, mainly derived from dependency-syntactic and semantic role structures, can significantly improve the performance of automatic systems for a number of fine-grained opinion analysis tasks: marking up opinion expressions, finding opinion holders, and determining the polarities of opinion expressions. These features make it possible to model the way opinions expressed in natural-language discourse interact in a sentence over arbitrary distances. The use of relations requires us to consider multiple opinions simultaneously, which makes exact inference intractable. However, a reranker can be used as a sufficiently accurate and efficient approximation. A number of feature sets and machine learning approaches for the rerankers are evaluated. For the task of opinion expression extraction, the best model shows a 10-point absolute improvement in soft recall on the MPQA corpus over a conventional sequence labeler based on local contextual features, while precision decreases only slightly. Significant improvements are also seen for the extended tasks where holders and polarities are considered: 10 and 7 points in recall, respectively. In addition, the systems outperform previously published results for unlabeled (6 F-measure points) and polarity-labeled (10–15 points) opinion expression extraction. Finally, as an extrinsic evaluation, the extracted MPQA-style opinion expressions are used in practical opinion mining tasks. In all scenarios considered, the machine learning features derived from the opinion expressions lead to statistically significant improvement.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?