Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Free Path Lengths in Quas… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Free Path Lengths in Quasi Crystals

Artikel i vetenskaplig tidskrift
Författare Bernt Wennberg
Publicerad i Journal of Statistical Physics
Volym 147
Nummer/häfte 5
Sidor 981-990
ISSN 0022-4715
Publiceringsår 2012
Publicerad vid Institutionen för matematiska vetenskaper, matematik
Sidor 981-990
Språk en
Länkar dx.doi.org/10.1007/s10955-012-0500-...
Ämnesord Lorentz gas, Quasi crystal, Free path lengths, periodic lorentz gas, boltzmann-grad limit, equation
Ämneskategorier Matematik

Sammanfattning

The Lorentz gas is a model for a cloud of point particles (electrons) in a distribution of scatterers in space. The scatterers are often assumed to be spherical with a fixed diameter d, and the point particles move with constant velocity between the scatterers, and are specularly reflected when hitting a scatterer. There is no interaction between point particles. An interesting question concerns the distribution of free path lengths, i.e. the distance a point particle moves between the scattering events, and how this distribution scales with scatterer diameter, scatterer density and the distribution of the scatterers. It is by now well known that in the so-called Boltzmann-Grad limit, a Poisson distribution of scatterers leads to an exponential distribution of free path lengths, whereas if the scatterer distribution is periodic, the free path length distribution asymptotically behaves as a power law. This paper considers the case when the scatters are distributed on a quasi crystal, i.e. non periodically, but with a long range order. Simulations of a one-dimensional model are presented, showing that the quasi crystal behaves very much like a periodic crystal, and in particular, the distribution of free path lengths is not exponential.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?