Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

The Human Stratum Corneum… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

The Human Stratum Corneum Prevents Small Gold Nanoparticle Penetration and Their Potential Toxic Metabolic Consequences

Artikel i vetenskaplig tidskrift
Författare D. C. Liu
A. P. Raphael
Daniel Sundh
J. E. Grice
H. P. Soyer
M. S. Roberts
T. W. Prow
Publicerad i Journal of Nanomaterials
Sidor Article Nr: 721706
ISSN 1687-4110
Publiceringsår 2012
Publicerad vid Institutionen för neurovetenskap och fysiologi
Sidor Article Nr: 721706
Språk en
Länkar dx.doi.org/10.1155/2012/721706
Ämnesord human skin, in-vitro, delivery, vivo, size
Ämneskategorier Nanoteknik

Sammanfattning

Nanoparticles are being used inmultiple applications, ranging from biomedical and skin care products (e. g., sunscreen) through to industrial manufacturing processes (e. g., water purification). The increase in exposure has led to multiple reports on nanoparticle penetration and toxicity. However, the correlation between nanoparticle size and its penetration without physical/chemical enhancers through the skin is poorly understood-with studies instead focusing primarily on skin penetration under disrupted conditions. In this paper, we investigate the penetration and metabolic effects of 10 nm, 30 nm, and 60 nm gold nanoparticles within viable excised human skin after 24-hour exposure usingmultiphoton tomograph-fluorescence lifetime imaging microscopy. After 24 hour treatment with the 10, 30, and 60 nm gold nanoparticles, there was no significant penetration detected below the stratum corneum. Furthermore, there were no changes in metabolic output (total NAD(P) H) in the viable epidermis posttreatment correlating with lack of penetration of nanoparticles. These results are significant for estimating topical nanoparticle exposure in humans where other model systems may overestimate the exposure of nanoparticles to the viable epidermis. Our data shows that viable human skin resists permeation of small nanoparticles in a size range that has been reported to penetrate deeply in other skin models.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?