Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Schwarz type precondition… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Schwarz type preconditioners for the neutron diffusion equation

Artikel i vetenskaplig tidskrift
Författare Antoni Vidal
Sebastian González-Pintor
Damian Ginestar
Gumersindo Verdu
Christophe Demazière
Publicerad i Journal of Computational and Applied Mathematics
Volym 309
Sidor 563–574
ISSN 0377-0427
Publiceringsår 2017
Publicerad vid Institutionen för matematiska vetenskaper
Sidor 563–574
Språk en
Länkar dx.doi.org/10.1016/j.cam.2016.02.05...
Ämnesord Neutron diffusion, Finite element method, Substructuring, Schwarz preconditioner
Ämneskategorier Teknisk fysik, Beräkningsfysik, Annan fysik, Kärnfysik, Beräkningsmatematik

Sammanfattning

Domain decomposition is a mature methodology that has been used to accelerate the convergence of partial differential equations. Even if it was devised as a solver by itself, it is usually employed together with Krylov iterative methods improving its rate of convergence, and providing scalability with respect to the size of the problem. In this work, a high order finite element discretization of the neutron diffusion equation is considered. In this problem the preconditioning of large and sparse linear systems arising from a source driven formulation becomes necessary due to the complexity of the problem. On the other hand, preconditioners based on an incomplete factorization are very expensive from the point of view of memory requirements. The acceleration of the neutron diffusion equation is thus studied here by using alternative preconditioners based on domain decomposition techniques inside Schur complement methodology. The study considers substructuring preconditioners, which do not involve overlapping, and additive Schwarz preconditioners, where some overlapping between the subdomains is taken into account. The performance of the different approaches is studied numerically using two-dimensional and three-dimensional problems. It is shown that some of the proposed methodologies outperform incomplete LU factorization for preconditioning as long as the linear system to be solved is large enough, as it occurs for three-dimensional problems. They also outperform classical diagonal Jacobi preconditioners, as long as the number of systems to be solved is large enough in such a way that the overhead of building the preconditioner is less than the improvement in the convergence rate.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?