Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Modeling nanomaterial fat… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Modeling nanomaterial fate and uptake in the environment: current knowledge and future trends

Artikel i vetenskaplig tidskrift
Författare M. Baalousha
Geert Cornelis
T. A. J. Kuhlbusch
I. Lynch
C. Nickel
W. Peijnenburg
N. W. van den Brink
Publicerad i Environmental Science-Nano
Volym 3
Nummer/häfte 2
Sidor 323-345
ISSN 2051-8153
Publiceringsår 2016
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor 323-345
Språk en
Länkar dx.doi.org/10.1039/c5en00207a
Ämnesord SATURATED POROUS-MEDIA, WALLED CARBON NANOTUBES, FRESH-WATER, INVERTEBRATE, PARTICLE ICP-MS, SILVER NANOPARTICLES, ENGINEERED, NANOMATERIALS, IONIC-STRENGTH, PHYSICOCHEMICAL FILTRATION, FULLERENE, NANOPARTICLES, RELEVANT CONCENTRATIONS
Ämneskategorier Miljövetenskap, Nanoteknik

Sammanfattning

Modeling the environmental fate of nanomaterials (NMs) and their uptake by cells and organisms in the environment is essential to underpin experimental research, develop overarching theories, improve our fundamental understanding of NM exposure and hazard, and thus enable risk assessment of NMs. Here, we critically review the state-of-the-art of the available models that can be applied/adapted to quantify/predict NM fate and uptake in aquatic and terrestrial systems and make recommendations regarding future directions for model development. Fate models have evolved from substance flow analysis models that lack nano-specific processes to more advanced mechanistic models that (at least partially) take nano-specific (typically non-equilibrium, dynamic) processes into account, with a focus on key fate processes such as agglomeration, sedimentation and dissolution. Similarly, NM uptake by organisms is driven by dynamic processes rather than by equilibrium partitioning. Hence, biokinetic models are more suited to model NM uptake, compared with the simple bio-accumulation factors used for organic compounds. Additionally, biokinetic models take speciation processes (e.g. particulate versus ionic uptake) into account, although identifying essential environment-specific processes to include in models remains a challenge. The models developed so far require parameterization, calibration and validation with available data, e.g. field data (if available), or experimental data (e.g. aquatic and terrestrial mesocosms), rather than extension to more complex and sophisticated models that include all possible transformation processes. Collaborative efforts between experimentalists and modelers to generate appropriate ground-truth data would advance the field most rapidly.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?