Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Full modification coverag… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Full modification coverage through automatic similarity-based test case selection

Artikel i vetenskaplig tidskrift
Författare Francisco Gomes de Oliveira Neto
Patricia D. L. Machado
Richard Torkar
Publicerad i Information and Software Technology
Volym 80
Sidor 124-137
ISSN 0950-5849
Publiceringsår 2016
Publicerad vid Institutionen för data- och informationsteknik (GU)
Sidor 124-137
Språk en
Länkar dx.doi.org/10.1016/j.infsof.2016.08...
Ämnesord Regression testing, Test case selection, Model-based testing, Experimental Study
Ämneskategorier Programvaruteknik

Sammanfattning

Context: This paper presents the similarity approach for regression testing (SART), where a similarity-based test case selection technique is used in a model-based testing process to provide selection of test cases exercising modified parts of a specification model. Unlike other model-based regression testing techniques, SART relies on similarity analysis among test cases to identify modifications, instead of comparing models, hence reducing the dependency on specific types of model. Objective: To present convincing evidence of the usage of similarity measures for modification-traversing test case selection. Method: We investigate SART in a case study and an experiment. The case study uses artifacts from industry and should be seen as a sanity check of SART, while the experiment focuses on gaining statistical power through the generation of synthetical models in order to provide convincing evidence of SART’s effectiveness. Through posthoc analysis we obtain p-values and effect sizes to observe statistically significant differences between treatments with respect to transition and modification coverage. Results: The case study with industrial artifacts revealed that SART is able to uncover the same number of defects as known similarity-based test case selection techniques. In turn, the experiment shows that SART, unlike the other investigated techniques, presents 100% modification coverage. In addition, all techniques covered a similar percentage of model transitions. Conclusions: In summary, not only does SART provide transition and defect coverage equal to known STCS techniques, but it exceeds greatly in covering modified parts of the specification model, being a suitable candidate for model-based regression testing. Keywords: Regression testing, Test case selection, Model-based testing, Experimental Study

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?