Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Context-specific independ… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Context-specific independence mixture modeling for positional weight matrices.

Artikel i vetenskaplig tidskrift
Författare Benjamin Georgi
Alexander Schliep
Publicerad i Bioinformatics (Oxford, England)
Volym 22
Nummer/häfte 14
Sidor e166-73
ISSN 1367-4811
Publiceringsår 2006
Publicerad vid Institutionen för data- och informationsteknik, datavetenskap (GU)
Sidor e166-73
Språk en
Länkar dx.doi.org/10.1093/bioinformatics/b...
www.ncbi.nlm.nih.gov/entrez/query.f...
Ämnesord Algorithms, Animals, Base Sequence, Binding Sites, Computer Simulation, DNA, genetics, Humans, Mice, Models, Genetic, Models, Statistical, Molecular Sequence Data, Protein Binding, Sequence Alignment, methods, Sequence Analysis, DNA, methods, Software, Transcription Factors, genetics
Ämneskategorier Bioinformatik (beräkningsbiologi)

Sammanfattning

A positional weight matrix (PWM) is a statistical representation of the binding pattern of a transcription factor estimated from known binding site sequences. Previous studies showed that for factors which bind to divergent binding sites, mixtures of multiple PWMs increase performance. However, estimating a conventional mixture distribution for each position will in many cases cause overfitting.We propose a context-specific independence (CSI) mixture model and a learning algorithm based on a Bayesian approach. The CSI model adjusts complexity to fit the amount of variation observed on the sequence level in each position of a site. This not only yields a more parsimonious description of binding patterns, which improves parameter estimates, it also increases robustness as the model automatically adapts the number of components to fit the data. Evaluation of the CSI model on simulated data showed favorable results compared to conventional mixtures. We demonstrate its adaptive properties in a classical model selection setup. The increased parsimony of the CSI model was shown for the transcription factor Leu3 where two binding-energy subgroups were distinguished equally well as with a conventional mixture but requiring 30% less parameters. Analysis of the human-mouse conservation of predicted binding sites of 64 JASPAR TFs showed that CSI was as good or better than a conventional mixture for 89% of the TFs and for 70% for a single PWM model.http://algorithmics.molgen.mpg.de/mixture.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?