Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän

Predicting and Evaluating… - Göteborgs universitet Till startsida
Till innehåll Läs mer om hur kakor används på gu.se

Predicting and Evaluating Software Model Growth in the Automotive Industry

Paper i proceeding
Författare Jan Schröder
Christian Berger
Alessia Knauss
Harri Preenja
Ali Mohammad
Miroslaw Staron
Thomas Herpel
Publicerad i IEEE International Conference on Software Maintenance and Evolution (ICSME). 17-22 Sept. 2017, Shanghai, China
ISBN 978-1-5386-0992-7
Förlag IEEE
Publiceringsår 2017
Publicerad vid Institutionen för data- och informationsteknik (GU)
Språk en
Länkar https://doi.org/10.1109/ICSME.2017....
Ämneskategorier Programvaruteknik


The size of a software artifact influences the software quality and impacts the development process. In industry, when software size exceeds certain thresholds, memory errors accumulate and development tools might not be able to cope anymore, resulting in a lengthy program start up times, failing builds, or memory problems at unpredictable times. Thus, foreseeing critical growth in software modules meets a high demand in industrial practice. Predicting the time when the size grows to the level where maintenance is needed prevents unexpected efforts and helps to spot problematic artifacts before they become critical. Although the amount of prediction approaches in literature is vast, it is unclear how well they fit with prerequisites and expectations from practice. In this paper, we perform an industrial case study at an automotive manufacturer to explore applicability and usability of prediction approaches in practice. In a first step, we collect the most relevant prediction approaches from literature, including both, approaches using statistics and machine learning. Furthermore, we elicit expectations towards predictions from practitioners using a survey and stakeholder workshops. At the same time, we measure software size of 48 software artifacts by mining four years of revision history, resulting in 4,547 data points. In the last step, we assess the applicability of state-of-the-art prediction approaches using the collected data by systematically analyzing how well they fulfill the practitioners' expectations. Our main contribution is a comparison of commonly used prediction approaches in a real world industrial setting while considering stakeholder expectations. We show that the approaches provide significantly different results regarding prediction accuracy and that the statistical approaches fit our data best.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?