Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Mastering data complexity… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Mastering data complexity for autonomous driving with adaptive point clouds for urban environments

Paper i proceeding
Författare Hang Yin
Christian Berger
Publicerad i IEEE Intelligent Vehicles Symposium, Proceedings
ISBN 978-1-5090-4804-5
Förlag IEEE
Förlagsort New york
Publiceringsår 2017
Publicerad vid Institutionen för data- och informationsteknik, Software Engineering (GU)
Språk en
Ämneskategorier Datorseende och robotik (autonoma system)

Sammanfattning

LiDAR sensors play a crucial role in autonomous driving and advanced driver assistance systems. By firing high-rate laser beams, a LiDAR device is able to project its surroundings as 2D or 3D point cloud, which can be used for different purposes such as object detection, map generation, localization, and navigation. Autonomous vehicles are often equipped with at least one multi-layer LiDAR sensor with 360-degree coverage to include as much information as possible in the point cloud. Such a device generates enormous amount of data which poses a challenge for data storage, real-Time computation, and data transmission, as autonomous vehicles are typically resource-constrained systems. This paper proposes a lightweight and adaptive point cloud data structure to reduce the size of a 3D point cloud. The suggested data structure can be flexibly configured with different parameters to adapt for precision, distance coverage, and reflectivity resolution. The precision of the data structure is evaluated using a 16-layer Velodyne LiDAR sensor (VLP-16) to collect data in the city area of AstaZero proving ground and Gothenburg downtown. Our results show that the adaptive data structure can consume only 1/8th of the original point cloud size and hence, it is particularly suitable for applications with limited hardware resources or certain tolerance to precision of the point cloud. The suggested concept is also generalizable to other types of point cloud providing sensors.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?