 Till sidans topp

Sidansvarig: Webbredaktion

ON HP-STREAMLINE DIFFUSIO… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

# ON HP-STREAMLINE DIFFUSION AND NITSCHE SCHEMES FOR THE RELATIVISTIC VLASOV-MAXWELL SYSTEM

Artikel i vetenskaplig tidskrift
Författare Mohammad Asadzadeh P. Kowalczyk Christoffer Standar Kinetic and Related Models 12 1 105-131 1937-5093 2019 Institutionen för matematiska vetenskaper 105-131 en dx.doi.org/10.3934/krm.2019005 Streamline diffusion, discontinuous Galerkin, hp-method, Vlasov-Maxwell system, Nitsche scheme, discontinuous galerkin methods, 1st-order hyperbolic problems, finite, element methods, fokker-planck system, poisson system, convergence, analysis, equations, euler, Mathematics Matematik

## Sammanfattning

We study stability and convergence of hp-streamline diffusion (SD) finite element, and Nitsche's schemes for the three dimensional, relativistic (3 spatial dimension and 3 velocities), time dependent Vlasov-Maxwell system and Maxwell's equations, respectively. For the hp scheme for the Vlasov-Maxwell system, assuming that the exact solution is in the Sobolev space HS+1(Omega), we derive global a priori error bound of order O(h/p)(s+1/2), where h(= max(K) h(K)) is the mesh parameter and p(= max(K) p(K)) is the spectral order. This estimate is based on the local version with h(K) = diam K being the diameter of the phase-space-time element K and pR-is the spectral order (the degree of approximating finite element polynomial) for K. As for the Nitsche's scheme, by a simple calculus of the field equations, first we convert the Maxwell's system to an elliptic type equation. Then, combining the Nitsche's method for the spatial discretization with a second order time scheme, we obtain optimal convergence of O(h(2) +k(2)), where h is the spatial mesh size and k is the time step. Here, as in the classical literature, the second order time scheme requires higher order regularity assumptions. Numerical justification of the results, in lower dimensions, is presented and is also the subject of a forthcoming computational work .