Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

ON HP-STREAMLINE DIFFUSIO… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

ON HP-STREAMLINE DIFFUSION AND NITSCHE SCHEMES FOR THE RELATIVISTIC VLASOV-MAXWELL SYSTEM

Artikel i vetenskaplig tidskrift
Författare Mohammad Asadzadeh
P. Kowalczyk
Christoffer Standar
Publicerad i Kinetic and Related Models
Volym 12
Nummer/häfte 1
Sidor 105-131
ISSN 1937-5093
Publiceringsår 2019
Publicerad vid Institutionen för matematiska vetenskaper
Sidor 105-131
Språk en
Länkar dx.doi.org/10.3934/krm.2019005
Ämnesord Streamline diffusion, discontinuous Galerkin, hp-method, Vlasov-Maxwell system, Nitsche scheme, discontinuous galerkin methods, 1st-order hyperbolic problems, finite, element methods, fokker-planck system, poisson system, convergence, analysis, equations, euler, Mathematics
Ämneskategorier Matematik

Sammanfattning

We study stability and convergence of hp-streamline diffusion (SD) finite element, and Nitsche's schemes for the three dimensional, relativistic (3 spatial dimension and 3 velocities), time dependent Vlasov-Maxwell system and Maxwell's equations, respectively. For the hp scheme for the Vlasov-Maxwell system, assuming that the exact solution is in the Sobolev space HS+1(Omega), we derive global a priori error bound of order O(h/p)(s+1/2), where h(= max(K) h(K)) is the mesh parameter and p(= max(K) p(K)) is the spectral order. This estimate is based on the local version with h(K) = diam K being the diameter of the phase-space-time element K and pR-is the spectral order (the degree of approximating finite element polynomial) for K. As for the Nitsche's scheme, by a simple calculus of the field equations, first we convert the Maxwell's system to an elliptic type equation. Then, combining the Nitsche's method for the spatial discretization with a second order time scheme, we obtain optimal convergence of O(h(2) +k(2)), where h is the spatial mesh size and k is the time step. Here, as in the classical literature, the second order time scheme requires higher order regularity assumptions. Numerical justification of the results, in lower dimensions, is presented and is also the subject of a forthcoming computational work [22].

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?