Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Clustering Vehicle Maneuv… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Clustering Vehicle Maneuver Trajectories Using Mixtures of Hidden Markov Models

Paper i proceeding
Författare John Martinsson
Nasser Mohammadiha
Alexander Schliep
Publicerad i 2018 21st International Conference on Intelligent Transportation Systems (ITSC)
ISBN 978-1-7281-0323-5
Förlag IEEE
Publiceringsår 2018
Publicerad vid Institutionen för data- och informationsteknik, datavetenskap (GU)
Språk en
Länkar https://ieeexplore.ieee.org/documen...
Ämneskategorier Informationsbehandling

Sammanfattning

The safety of autonomous vehicles needs to be verified and validated by rigorous testing. It is expensive to test autonomous vehicles in the field, and therefore virtual testing methods are needed. Generative models of maneuvers such as cut-ins, overtakes, and lane-keeping are needed to thoroughly test the autonomous vehicle in a virtual environment. To train such models we need ground truth maneuver labels and obtaining such labels can be time-consuming and costly. In this work, we use a mixture of hidden Markov models to find clusters in maneuver trajectories, which can be used to speed up the labeling process. The maneuver trajectories are noisy, asynchronous and of uneven length, which make hidden Markov models a good fit for the data. The method is evaluated on labeled data from a test track consisting of cut-ins and overtakes with favorable results. Further, it is applied to natural data where many of the clusters found can be interpreted as driver maneuvers under reasonable assumptions. We show that mixtures of hidden Markov models can be used to find motion patterns in driver maneuver data from highways and country roads.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?