Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Control of membrane lipid… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Control of membrane lipid homeostasis by lipid-bilayer associated sensors: A mechanism conserved from bacteria to humans.

Forskningsöversiktsartikel
Författare Diego de Mendoza
Marc Pilon
Publicerad i Progress in lipid research
Volym 76
Sidor 100996
ISSN 1873-2194
Publiceringsår 2019
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor 100996
Språk en
Länkar dx.doi.org/10.1016/j.plipres.2019.1...
www.ncbi.nlm.nih.gov/entrez/query.f...
Ämneskategorier Cell- och molekylärbiologi, Molekylär biofysik, Cellbiologi, Cellbiologi, Cell- och molekylärbiologi

Sammanfattning

The lipid composition of biological membranes is key for cell viability. Nevertheless, and despite their central role in cell function, our understanding of membrane physiology continues to lag behind most other aspects of cell biology. The maintenance of membrane properties in situations of environmental stress requires homeostatic sense-and-response mechanisms. For example, the balance between esterified saturated (SFAs) and unsaturated fatty acids (UFAs), is a key factor determining lipid packing, water permeability, and membrane fluidity. The reduced thermal motion of lipid acyl chains triggered by an increase in SFAs causes a tighter lipid packing and increase the membrane viscosity. Conversely almost all organisms adapt to membrane rigidifying conditions, such as low temperature in poikilotherms, by incorporating more lipids with poorly packing unsaturated acyl chains. The molecular mechanisms underlying membrane homeostasis are only starting to emerge through combinations of genetics, cell biology, lipidomics, structural approaches and computational modelling. In this review we discuss recent advances in defining molecular machineries responsible for sensing membrane properties and mediating homeostatic responses in bacteria, yeast and animals. Although these organisms use remarkably distinct sensing mechanisms to mediate membrane adaptation, they suggest that the principle of transmembrane signaling to integrate membrane composition with lipid biosynthesis is ancient and essential for life.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?