Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Modeling Arctic Boundary … - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Modeling Arctic Boundary Layer Cloud Streets at Grey-zone Resolutions

Artikel i vetenskaplig tidskrift
Författare Hui-Wen Lai
F. Zhang
E. E. Clothiaux
D. R. Stauffer
B. J. Gaudet
J. Verlinde
Deliang Chen
Publicerad i Advances in Atmospheric Sciences
Volym 37
Nummer/häfte 1
Sidor 42-56
ISSN 0256-1530
Publiceringsår 2020
Publicerad vid Institutionen för geovetenskaper
Sidor 42-56
Språk en
Länkar https://doi.org/10.1007/s00376-019-...
Ämnesord cloud streets, large eddy simulation, grey zone. Arctic clouds, model resolution
Ämneskategorier Meteorologi och atmosfärforskning

Sammanfattning

To better understand how model resolution affects the formation of Arctic boundary layer clouds, we investigated the influence of grid spacing on simulating cloud streets that occurred near Utqiagvik (formerly Barrow), Alaska, on 2 May 2013 and were observed by MODIS (the Moderate Resolution Imaging Spectroradiometer). The Weather Research and Forecasting model was used to simulate the clouds using nested domains with increasingly fine resolution ranging from a horizontal grid spacing of 27 km in the boundary-layer-parameterized mesoscale domain to a grid spacing of 0.111 km in the large-eddy-permitting domain. We investigated the model-simulated mesoscale environment, horizontal and vertical cloud structures, boundary layer stability, and cloud properties, all of which were subsequently used to interpret the observed roll-cloud case. Increasing model resolution led to a transition from a more buoyant boundary layer to a more shear-driven turbulent boundary layer. The clouds were stratiform-like in the mesoscale domain, but as the model resolution increased, roll-like structures, aligned along the wind field, appeared with ever smaller wavelengths. A stronger vertical water vapor gradient occurred above the cloud layers with decreasing grid spacing. With fixed model grid spacing at 0.333 km, changing the model configuration from a boundary layer parameterization to a large-eddy-permitting scheme produced a more shear-driven and less unstable environment, a stronger vertical water vapor gradient below the cloud layers, and the wavelengths of the rolls decreased slightly. In this study, only the large-eddy-permitting simulation with gird spacing of 0.111 km was sufficient to model the observed roll clouds.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?