Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Enlarged Training Dataset… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Enlarged Training Dataset by Pairwise GANs for Molecular-Based Brain Tumor Classification

Artikel i vetenskaplig tidskrift
Författare Chenjie Ge
Irene Yu-Hua Gu
Asgeir Store Jakola
Jie Yang
Publicerad i IEEE Access
Volym 8
Sidor 22560 - 22570
Publiceringsår 2020
Publicerad vid Institutionen för neurovetenskap och fysiologi, sektionen för klinisk neurovetenskap
Sidor 22560 - 22570
Språk en
Länkar https://ieeexplore.ieee.org/documen...
Ämneskategorier Medicinsk bildbehandling, Signalbehandling, Cancer och onkologi, Diagnostisk radiologi, Neurokirurgi, Neurologi

Sammanfattning

This paper addresses issues of brain tumor subtype classification using Magnetic Resonance Images (MRIs) from different scanner modalities like T1 weighted, T1 weighted with contrast-enhanced, T2 weighted and FLAIR images. Currently most available glioma datasets are relatively moderate in size, and often accompanied with incomplete MRIs in different modalities. To tackle the commonly encountered problems of insufficiently large brain tumor datasets and incomplete modality of image for deep learning, we propose to add augmented brain MR images to enlarge the training dataset by employing a pairwise Generative Adversarial Network (GAN) model. The pairwise GAN is able to generate synthetic MRIs across different modalities. To achieve the patient-level diagnostic result, we propose a post-processing strategy to combine the slice-level glioma subtype classification results by majority voting. A two-stage course-to-fine training strategy is proposed to learn the glioma feature using GAN-augmented MRIs followed by real MRIs. To evaluate the effectiveness of the proposed scheme, experiments have been conducted on a brain tumor dataset for classifying glioma molecular subtypes: isocitrate dehydrogenase 1 (IDH1) mutation and IDH1 wild-type. Our results on the dataset have shown good performance (with test accuracy 88.82%). Comparisons with several state-of-the-art methods are also included.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?