Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Evolutionary optimization… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Evolutionary optimization of classifiers and features for single trial EEG Discrimination.

Artikel i vetenskaplig tidskrift
Författare Malin C.B. Åberg
Johan Wessberg
Publicerad i Biomedical Engineering Online
Volym 6
Nummer/häfte 1
Sidor 32
ISSN 1475-925X
Publiceringsår 2007
Publicerad vid Institutionen för neurovetenskap och fysiologi, sektionen för fysiologi
Sidor 32
Språk en
Länkar dx.doi.org/10.1186/1475-925X-6-32
Ämneskategorier Bioinformatik och systembiologi, Signalbehandling, Klinisk neurofysiologi, Neurofysiologi

Sammanfattning

ABSTRACT: BACKGROUND: State-of-the-art signal processing methods are known to detect information in single trial event-related EEG data, a crucial aspect in development of real-time applications such as brain computer interfaces. This paper investigates one such novel approach, evaluating how individual classifier and feature subset tailoring affects classification of single trial EEG finger movements. The discrete wavelet transform was used to extract signal features that were classified using linear regression and non-linear neural network models, which were trained and architecturally optimized with evolutionary algorithms. The input feature subsets were also allowed to evolve, thus performing feature selection in a wrapper fashion. Filter approaches were implemented as well by limiting the degree of optimization. RESULTS: Using only 10 features and 100 patterns, the non-linear wrapper approach achieved the highest validation classification accuracy (subject mean 75%), closely followed by the linear wrapper method (73.5%). The optimal features differed much between subjects, yet some physiologically plausible patterns were observed. CONCLUSIONS: High degrees of classifier parameter, structure and feature subset tailoring on individual levels substantially increase single-trial EEG classification rates, an important consideration in areas where highly accurate detection rates are essential. Also, the presented method provides insight into the spatial characteristics of finger movement EEG patterns.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?