Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän

Shallow Features for Diff… - Göteborgs universitet Till startsida
Till innehåll Läs mer om hur kakor används på gu.se

Shallow Features for Differentiating Disease-Treatment Relations using Supervised Learning, a pilot study

Poster (konferens)
Författare Dimitrios Kokkinakis
Publicerad i Proceedings of the 12th International Conference TSD (Text, Speech and Dialogue). Springer Verlag, LNCS/LNAI series.
Publiceringsår 2009
Publicerad vid Institutionen för svenska språket
Språk en
Ämnesord medical terminology, semantic relations, supervised learning, MeSH
Ämneskategorier Språkteknologi (språkvetenskaplig databehandling), Övrig informationsteknik, Medicin, Övrig annan humaniora


Clinical narratives provide an information rich, nearly unexplored corpus of evidential knowledge that is considered as a challenge for practitioners in the language technology field, particularly because of the nature of the texts (excessive use of terminology, abbreviations, orthographic term variation), the significant opportunities for clinical research that such material can provide and the potentially broad impact that clinical findings may have in every day life. It is therefore recognized that the capability to automatically extract key concepts and their relationships from such data will allow systems to properly understand the content and knowledge embedded in the free text which can be of great value for applications such as information extraction and question & answering. This paper gives a brief presentation of such textual data and its semantic annotation, and discuss the set of semantic relations that can be observed between diseases and treatments in the sample. The problem is then designed as a machine learning task in which the relations are tried to be learned in a supervised fashion, using pre-annotated data. The challenges designing the problem and empirical results are presented.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?