Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän

Novel Contact Forces for … - Göteborgs universitet Till startsida
Till innehåll Läs mer om hur kakor används på gu.se

Novel Contact Forces for Immersed Boundary Paper Forming Simulations

Paper i proceeding
Författare Gustav Kettil
Andreas Mark
Frida Svelander
Ron Lai
Lars Martinsson
Kenneth Wester
Mats Fredlund
Maria Rentzhog
Ulf Nyman
Johan Tryding
Fredrik Edelvik
Publicerad i Online proceedings: http://tappi.sclivelearningcenter.com/; PF2 - The Past, Present and Future of CFD Papermaking; PaperCon 2015 Atlanta April 19-22
Publiceringsår 2015
Publicerad vid Institutionen för matematiska vetenskaper, matematik
Språk en
Ämnesord contact forces, fiber interaction, fiber suspension, immersed boundary methods
Ämneskategorier Matematik, Beräkningsmatematik, Strömningsmekanik, Pappers-, massa- och fiberteknik


To be able to simulate the different processes involved in paper machines, models, numerical methods and algorithms have to be developed which capture as much as possible of the real physical phenomena. In this paper a model for calculation of the chemical and physical interaction between objects included in a fiber suspension is presented. The contact force model is based on DLVO theory [1, 2] and uses so-called contact points distributed along the fiber suspension objects. The contact model has been used in an existing framework to simulate the build-up of low density paper webs. In the framework fibers are modeled as elliptical cylinders whose movements are described by finite-strain beam theory which includes shearing. The fluid flow is computed using a Navier-Stokes solver and immersed boundary methods are utilized to resolve the flow around each fiber. For validation, the air permeability and thickness of the paper webs have been measured and compared with simulated data. The result demonstrates that the software can be used to simulate paper forming.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?