Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän

Using hidden Markov model… - Göteborgs universitet Till startsida
Till innehåll Läs mer om hur kakor används på gu.se

Using hidden Markov models to analyze gene expression time course data.

Artikel i vetenskaplig tidskrift
Författare Alexander Schliep
Alexander Schönhuth
Christine Steinhoff
Publicerad i Bioinformatics (Oxford, England)
Volym 19 Suppl 1
Sidor i255-63
ISSN 1367-4803
Publiceringsår 2003
Publicerad vid Institutionen för data- och informationsteknik, datavetenskap (GU)
Sidor i255-63
Språk en
Länkar www.ncbi.nlm.nih.gov/entrez/query.f...
Ämnesord Algorithms, Cell Cycle, genetics, Cluster Analysis, Fibroblasts, physiology, Gene Expression Profiling, methods, Gene Expression Regulation, physiology, Markov Chains, Models, Genetic, Models, Statistical, Proteins, genetics, metabolism, Sequence Alignment, methods, Sequence Analysis, Protein, methods, Software, Time Factors, User-Computer Interface, Yeasts, cytology, genetics, metabolism
Ämneskategorier Bioinformatik (beräkningsbiologi)


Cellular processes cause changes over time. Observing and measuring those changes over time allows insights into the how and why of regulation. The experimental platform for doing the appropriate large-scale experiments to obtain time-courses of expression levels is provided by microarray technology. However, the proper way of analyzing the resulting time course data is still very much an issue under investigation. The inherent time dependencies in the data suggest that clustering techniques which reflect those dependencies yield improved performance.We propose to use Hidden Markov Models (HMMs) to account for the horizontal dependencies along the time axis in time course data and to cope with the prevalent errors and missing values. The HMMs are used within a model-based clustering framework. We are given a number of clusters, each represented by one Hidden Markov Model from a finite collection encompassing typical qualitative behavior. Then, our method finds in an iterative procedure cluster models and an assignment of data points to these models that maximizes the joint likelihood of clustering and models. Partially supervised learning--adding groups of labeled data to the initial collection of clusters--is supported. A graphical user interface allows querying an expression profile dataset for time course similar to a prototype graphically defined as a sequence of levels and durations. We also propose a heuristic approach to automate determination of the number of clusters. We evaluate the method on published yeast cell cycle and fibroblasts serum response datasets, and compare them, with favorable results, to the autoregressive curves method.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?