Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän

Blood Glucose Prediction … - Göteborgs universitet Till startsida
Till innehåll Läs mer om hur kakor används på gu.se

Blood Glucose Prediction with Variance Estimation Using Recurrent Neural Networks

Artikel i vetenskaplig tidskrift
Författare John Martinsson
Alexander Schliep
Björn Eliasson
Olof Mogren
Publicerad i Journal of Healthcare Informatics Research
Volym 4
Sidor 1-18
ISSN 2509-4971
Publiceringsår 2020
Publicerad vid Institutionen för medicin, avdelningen för molekylär och klinisk medicin
Institutionen för data- och informationsteknik, datavetenskap (GU)
Sidor 1-18
Språk en
Länkar https://doi-org.ezproxy.ub.gu.se/10...
Ämnesord Recurrent neural networks, Blood glucose prediction, Type 1 diabetes
Ämneskategorier Diabetologi


Many factors affect blood glucose levels in type 1 diabetics, several of which vary largely both in magnitude and delay of the effect. Modern rapid-acting insulins generally have a peak time after 60–90 min, while carbohydrate intake can affect blood glucose levels more rapidly for high glycemic index foods, or slower for other carbohydrate sources. It is important to have good estimates of the development of glucose levels in the near future both for diabetic patients managing their insulin distribution manually, as well as for closed-loop systems making decisions about the distribution. Modern continuous glucose monitoring systems provide excellent sources of data to train machine learning models to predict future glucose levels. In this paper, we present an approach for predicting blood glucose levels for diabetics up to 1 h into the future. The approach is based on recurrent neural networks trained in an end-to-end fashion, requiring nothing but the glucose level history for the patient. Our approach obtains results that are comparable to the state of the art on the Ohio T1DM dataset for blood glucose level prediction. In addition to predicting the future glucose value, our model provides an estimate of its certainty, helping users to interpret the predicted levels. This is realized by training the recurrent neural network to parameterize a univariate Gaussian distribution over the output. The approach needs no feature engineering or data preprocessing and is computationally inexpensive. We evaluate our method using the standard root-mean-squared error (RMSE) metric, along with a blood glucose-specific metric called the surveillance error grid (SEG). We further study the properties of the distribution that is learned by the model, using experiments that determine the nature of the certainty estimate that the model is able to capture.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?