Machine learning, Galaxy and more

Anup Kumar

Bioinformatics group, University of Freiburg, Freiburg, Germany

26th October 2021

< ∃ >

Agenda

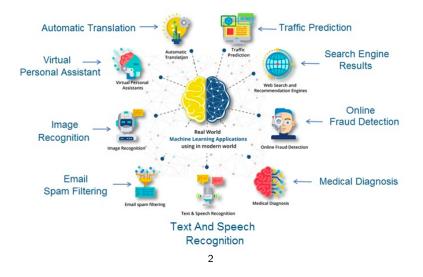
- Basics of machine learning
- Machine learning in Galaxy
- Ongoing machine learning projects Jupyterlab editor for ML and predicting protein evolution in SARS-COV2 sequences using deep learning

- ∢ ⊒ →

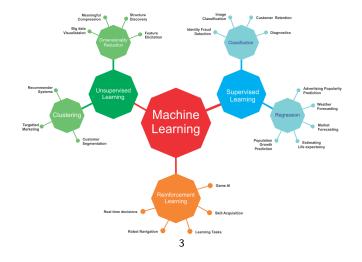
2/43

Basics of Machine learning

ヨト・イヨト


Machine learning (ML)

- ML computer program that learns rules from data
- Use rules to distinguish patterns
- Rules are mathematical functions
- Learn on existing (training) data, predict unknown outputs (of test data)
- ML algorithms work on numbers and not text or characters
- Example task: handwritten digit recognition


¹https://en.wikipedia.org/wiki/MNIST_database

General applications of ML

²https://www.learncomputerscienceonline.com/what-is-machine-learning/

Types of ML

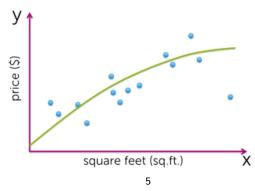
³https://skilllx.com/list-of-machine-learning-algorithms/

э

イロト イポト イヨト イヨト

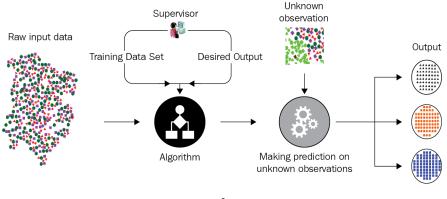
Supervised learning (Classification)

- Labeled data
- Features (gender, height, weight, index)
- Labels/classes/targets/output (status)


	Gender	Height	Weight	Index	Status
0	Male	174	96	4	Obesity
1	Male	189	87	2	Normal
2	Female	185	110	4	Obesity
3	Female	195	104	3	Overweight
4	Male	149	61	3	Overweight
5	Male	189	104	3	Overweight
6	Male	147	92	5	Extreme Obesity
7	Male	154	111	5	Extreme Obesity
8	Male	174	90	3	Overweight
9	Female	169	103	4	Obesity

4

 $^{4} https://www.kaggle.com/yersever/500-person-gender-height-weight-bodymassindex >$


Supervised learning (Regression)

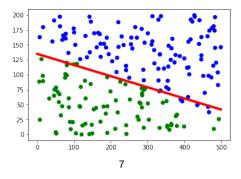
- Labeled data
- Class is a real number instead of a category
- Example: house price prediction

⁵https://finalagito.github.io/2016/08/17/The-Linar-Regression-The-First-Step-Of-Machine-Learning/ 🕨 🗧 🔊 🔍 🔍

Pipeline for supervised learning

6

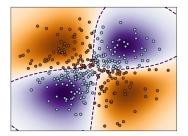
 $^{6} https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781789345070/1/ch01lvl1sec12/ml-tasks <math>\checkmark$ \bigcirc \bigcirc \bigcirc


Algorithms for supervised learning

- Linear models
- Support vector machines
- Decision trees
- Ensemble models
- Neural networks
- ...

3. 3

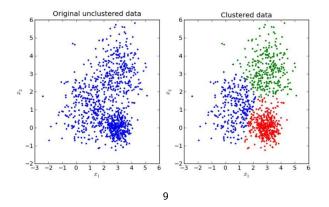
Linear models


- Learn straight line decision boundary
- Easy to use and fast
- Don't learn non-linear features

 $[\]label{eq:linear-non-logistic-regression-work-as-a-linear-classifier-what-cl$

Non-linear models

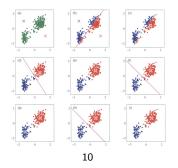
- Many times, patterns can only be separated by non-linear boundaries
- Linear models are not sufficient
- Need algorithms to learn non-linear features in data
- Examples: support vector machines, k-nearest neighbours, decision trees, ensemble methods ...



8

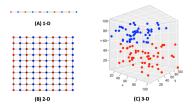
⁸https://scikit-learn.org/stable/auto_examples/svm/plot_svm_nonlinear.html

Unsupervised learning


- Datasets have no labels no supervision
- Extract structures in datasets
- Unsupervised approaches clustering, dimensionality reduction, ...

 9 https://deepai.org/machine-learning-glossary-and-terms/unsupervised-learning $< \square > < \square > < \square > <$

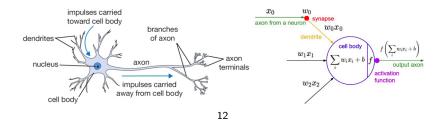
Clustering


- Group data points based on similarity
- Similarity is determined by a notion of closeness
- Iterative process
- Types of clustering: k-means, hierarchical clustering, density-based spatial clustering of applications with noise (DBSCAN)

¹⁰http://dendroid.sk/2011/05/09/k-means-clustering/

Dimensionality reduction

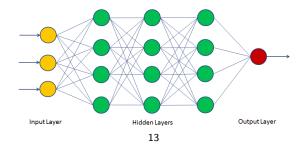
- Number of dimensions >> number of samples
- High dimensional dataset data points become farther from one another
- Curse of dimensionality hard to generalise on all combinations of a large number of dimensions
- May lead to high-variance or overfitting
- Remedy remove noisy or insignificant dimensions
- Approaches: principal component analysis (PCA), autoencoders (Neural network)


11

15 / 43

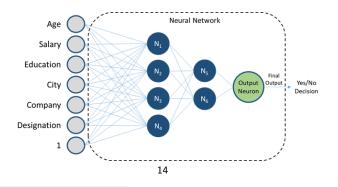
¹¹https://cofactorgenomics.com/curse-of-dimensionality-wk-16/

Artificial neural networks


- Inspired by biological neurons
- Dendrites and axons carry signals
- In an artificial neural network, neural network edges carry data to and from neurons

¹² https://towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-part-1-2b90b87795bc 📢 🚊 🔊 🔍 🔍

Artificial neural networks


- Neural network has an architecture
- Layers input, hidden, output,
- Loss function mean squared error, cross-entropy loss.
- Optimiser adam, adadelta, rmsprop ...
- Types of layers recurrent, dropout, convolutional ...
- Types of activations tanh, sigmoid, softmax ...

 13 https://www.datacamp.com/community/tutorials/neural-network-models-r < \square

Artificial neural networks

- Input layer receive data
- Number of neurons = number of features
- Hidden layer number of neurons or layers not fixed, depends on the problem being solved. Responsible for learning complex patterns
- Output layer compute output as a class or real number

¹⁴https://www.datacamp.com/community/tutorials/neural-network-models-r

General recommendations for using ML algorithms

- Preprocess datasets outliers, incorrect labels, standardise features by scaling, encoding, imputing missing values
- Split datasets train, test, validation and K-fold cross-validation
- Use right algorithm start with simple and then move to complex
- Fix data imbalance
- Tune hyperparameters
- Look for overfitting
- Evaluate accuracy for each class (for classification)

Machine learning in Galaxy

・ロト ・四ト ・ヨト ・ヨト

2

20 / 43

Galaxy Europe

- Online platform for numerous (>2000) scientific tools running on large compute resources including GPUs as well as large storage
- Accelerates scientific, especially bioinformatics research
- Public infrastructure
- Open-source community, contributors across the globe
- $\bullet\,$ Over 200 tutorials (hands-on materials) showing usage of tools in different scientific analyses $^{15}\,$

¹⁵https://training.galaxyproject.org/

Galaxy Europe

Tools	¢	COVID-19 Research	History	₽+ □:		
search tools	3	Want to learn the best practices for the analysis of SARS-CoV-2 data using Galaxy? V	search datasets	00		
		Galaxy data library for your convenience. The Galaxy community has created COVID-	Clade assignment			
1 Upload Data		If you need help submitting your data to public archives, like ENA, please get in touch.	We will support you in sharing your data.	68 shown, 4 deleted		
Get Data				36.3 GB	2 🗞 🕫	
Send Data		"Anyone, anywhere in the world should have free, unhindered access to not just my rese understanding." – Prof. Stephen Hawking	arch, but to the research of every great and enquiring mind across the spectrum of human			
Collection Operations				72: Nextclade on data 45 (FASTA alignment)	@ / ×	
GENERAL TEXT TOOLS		News	Events			
Text Manipulation		Oct 23, 2021 J UseGalaxy.eu Tool Updates for 2021-10-23	Oct 28, 2021 빠ሪ 후 Galaxy Developer Roundtable: Image analysis in Galaxy - pain	71: Nextclade on data 45 (Auspice v2 tree)	@/×	
Filter and Sort		OseGalaxy.eu 1001 Opdates for 2021-10-23	points and lessons learnt	70: Nextclade on data 45		
Join, Subtract and Group		Oct 18, 2021	Nov 1 2021	(JSON report)		
GENOMIC FILE MANIPULATION			m 🖉 ≢ Single-Cell RNAseq Training Course 2021	69: Nextclade on data 45	⊕ / ×	
Convert Formats		Oct 16, 2021 ✓ UseGalaxy.eu Tool Updates for 2021-10-16	Nov 4, 2021	(TSV report)		
FASTA/FASTQ				68: Nextclade on data 34	⊕∥×	
Quality Control		Oct 13, 2021 BY-COVID: A new EU project for pandemic preparedness	Nov 8, 2021 - Nov 12, 2021	(FASTA alignment)		
SAM/BAM		Oct 12, 2021		67: Nextclade on data 34 (Auspice v2 tree)	⊕ / ×	
BED		UseGalaxy.eu Use Case: cellular specification, differentiation and morphogenesis of the mucociliary epithelium	Nov 9, 2021 - Nov 10, 2021	66: Nextclade on data 34 (JSON report)		
VCF/BCF		morphogenesis of the mucocinary epimenum	gits Protein-ligand docking training for the Galaxy india community		~ / ^	
Nanopore		Oct 11, 2021 UseGalaxy.eu Use Case: microRNAs in heart disease	Nov 16, 2021 - Nov 17, 2021 5. NRZ-Authent Expertinnen- und Expertenworkshop	65: Nextclade on data 34	@/×	
COMMON GENOMICS TOOLS			(TSV report)			
Dperate on Genomic Intervals		Currently Runn	ing and Queued Jobs	64: radiopaedia_org_co	@ 🖊 🗙	
Fetch Sequences / Alignments		15K	vid-19-pneumonia-7_857 03 0-dcm.nii			
SENOMICS ANALYSIS		10 K		63: Nextclade on dat	@ / X	
Annotation						
Multiple Alignments		11:50 12:00 12:10 12:20 12:30 12:40 12:50 13:00 13:10	13.20 13:30 13:40 13:50 14:00 14:10 14:20 14:30 14:40	() 62: Nextclade on dat	@/×	
Assembly				a 25 (Auspice v2 tree)		
Mapping	-	UseGalaxy.eu: The European Galaxy instar	61: Nextclade on dat	⊕ / ×		
		. of Thousands of documented and maintained tools	OPEN CHAT	• 1		

¹⁶https://usegalaxy.eu/

Anup Kumar (Bioinformatics, Freiburg)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
26th October 2021

2

ML in Galaxy

PLOS COMPUTATIONAL BIOLOGY

RESEARCH ARTICLE

Galaxy-ML: An accessible, reproducible, and scalable machine learning toolkit for biomedicine

Qiang Gu^{1,2}, Anup Kumar₀³, Simon Bray₀³, Allison Creason₀^{1,2}, Alireza Khanteymoori₀³, Vahid Jalili₀^{1,2}, Björn Grüning₀³, Jeremy Goecks₀^{1,2}*

1 Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States of America, 2 The Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America, 3 Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany

* goecksj@ohsu.edu

Abstract

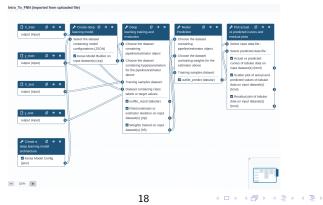
Supervised machine learning is an essential but difficult to use approach in biomedical data analysis. The Galaxy-ML toolkit (https://galaxyproject.org/community/machine-learning/) makes supervised machine learning more accessible to biomedical scientists by enabling them to perform end-to-end reproducible machine learning analyses at large scale using only a web browser. Galaxy-ML extends Galaxy (https://galaxyproject.org), a biomedical computational workbench used by tens of thousands of scientists across the world, with a suite of tools for all aspects of supervised machine learning.

17

Anup Kumar (Bioinformatics, Freiburg)

26th October 2021

ヘロト 人間ト 人間ト 人間ト



OPEN ACCESS

Citation: Gu Q, Kumar A, Bray S, Creason A, Khanteymoori A, Jaliii V, et al. (2021) Galaxy-ML: An accessible, reproducible, and scalable machine learning toolkit for biomedicine. PLoS Comput Biol 17(6): e1009014. https://doi.org/10.1371/journal. pbbl.1009014

ML in Galaxy

- 20 30 ML tools powered by scikit-learn and tensorflow
- ML tools classifiers, regressors, data preprocessors, visualizations, hyperparameter tuners, pipeline builders
- Workflow of tools
- Long running ML training on Galaxy infrastructure (using multiple CPUs, GPUs)

Anup Kumar (Bioinformatics, Freiburg)

ML tutorials in Galaxy

Statistics and machine learning

Statistical Analyses for omics data and machine learning using Galaxy tools

Requirements

Before diving into this topic, we recommend you to have a look at:

Introduction to Galaxy Analyses

Material		Q Search ×				
Lesson	Slides	Hands-on	Input dataset	Workflows	Galaxy tour	Galaxy instances
Age prediction using machine learning		ш	٥			0 -
Basics of machine learning		ш	ø		×	0 •
Classification in Machine Learning		ш	٥			0 *
Clustering in Machine Learning		д -	ø	<		0 -
Deep Learning (Part 1) - Feedforward neural networks (FNN)	÷ 9	ш	٥			0 *
Deep Learning (Part 2) - Recurrent neural networks (RNN)	÷ •	<u>а</u> -	ø			0 *
Deep Learning (Part 3) - Convolutional neural networks (CNN)	÷ 9	<u>а</u> -	٥			ф -
Interval-Wise Testing for omics data		д -	ø		×	0 -
Introduction to deep learning		<u>а</u> -	٥			0 *
Introduction to Machine Learning using R		<u>ц</u>				
Machine learning: classification and regression		<u>n</u> -	٥		8	÷ +
PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis [Bactive search] [Bacteor] Concertionenews [Incogness and tumer suppressing genes.]		<u>a</u> -	ø	*		
Regression in Machine Learning		□ -	0	<		÷ +
Text-mining with the SimText toolset Interactive tools		<u>.</u> -	٥	*		÷ •

19

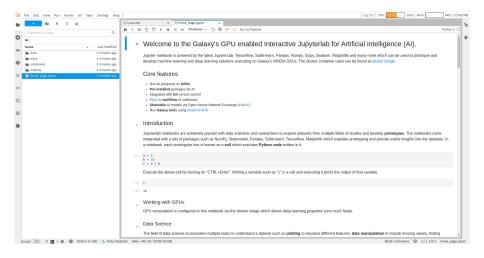
¹⁹https://training.galaxyproject.org/training-material/topics/statistics/

∃ →

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A
A
A

Our projects with machine learning

3.5 3


26 / 43

Galaxy Jupyterlab editor for ML

- Jupyter notebook popular editor
- Scientific computing, data science, machine learning, learn to code ...
- Simple and fast way to create prototypes
- No need for any package installation
- Easy to share any analysis
- Runs on web

27 / 43

Galaxy Jupyterlab²⁰

Anup Kumar (Bioinformatics, Freiburg) Machine learning, Galaxy and more 26th October 2021 28 / 43

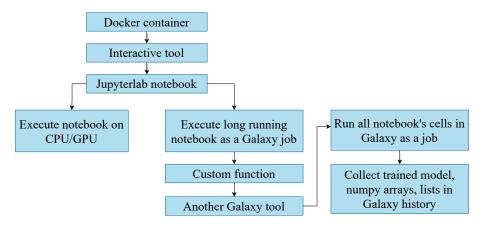
< □ > < 同 > < 回 > < 回 > < 回 >

²⁰https://live.usegalaxy.eu/?tool_id=interactive_tool_ml_jupyter_notebook

Features of Galaxy Jupyterlab

- Base container jupyter/tensorflow-notebook:latest ²¹
- CUDA and cuDNN packages for nvidia GPUs, tensorflow for GPU, pre-installed ML and DL packages
- $\bullet\,$ Create, share and reuse ML/DL models ONNX 22
- Git integration
- \bullet Workflow of notebooks Elyra AI 23
- Connect to Galaxy histories, datasets using bioblend ²⁴
- Miscellaneous dashboards for CPU, GPU, memory utilization, collapse/expand sections, notebook as voila ...
- Docker image ²⁵

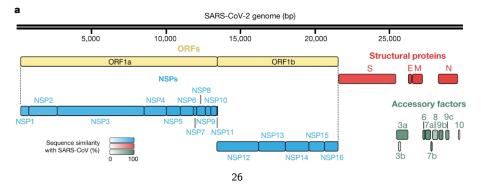
 $^{^{21}} https://hub.docker.com/r/jupyter/tensorflow-notebook/$


²²https://onnx.ai/

²³https://github.com/elyra-ai/elyra

 $^{^{24}} https://bioblend.readthedocs.io/en/latest/$

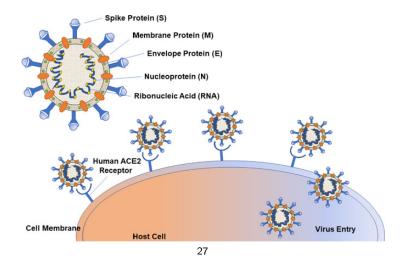
 $^{^{25} {\}rm https://github.com/anuprulez/ml-jupyter-notebook}$


Architecture of Galaxy Jupyterlab

Prediction of protein evolution (amino acid substitutions) in SARS-COV2 sequences

- Spike protein and amino acid (AA) mutations
- Nextclade clades
- Sequence to sequence learning
- Generative adversarial networks (GANs)
- Comparison of true and generated SARS-CoV-2 AA sequences
- Substitutions from generated AA sequences (future substitutions)?

Spike protein (S)


Non-structural and structural proteins

э

A D N A B N A B N A B N

²⁶https://www.nature.com/articles/s41586-020-2286-9

Spike protein (S)

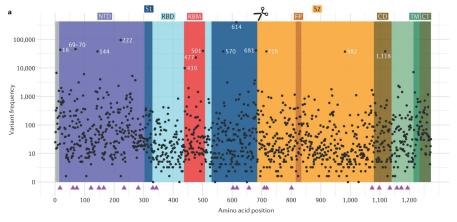
²⁷https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293463/

イロト イボト イヨト イヨト

Spike protein (S)

- Binds to the host cell
- Mutations may impact infectivity, transmissibility
- D614G: enhances viral replication ²⁸
- N439K: enhances the binding affinity for the ACE2 receptor and reduces the neutralizing activity of antibodies ²⁹
- Y453F: increased ACE2-binding affinity ³⁰

• ...

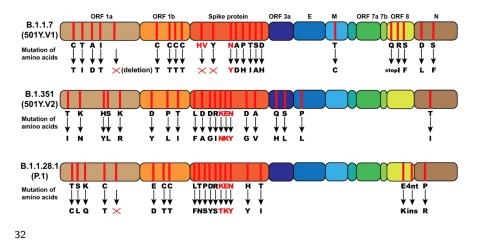

Anup Kumar (Bioinformatics, Freiburg)

²⁸https://www.nature.com/articles/s41586-020-2895-3, https://covariants.org/variants/20B.S.732A

²⁹https://www.nature.com/articles/s41579-021-00573-0

³⁰https://www.nature.com/articles/s41579-021-00573-0

Frequency of spike mutations (substitutions and deletions)

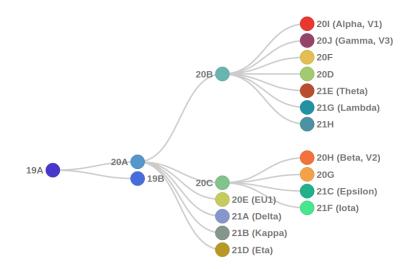


31

• 426,623 genomes, 5106 substitutions

³¹https://www.nature.com/articles/s41579-021-00573-0

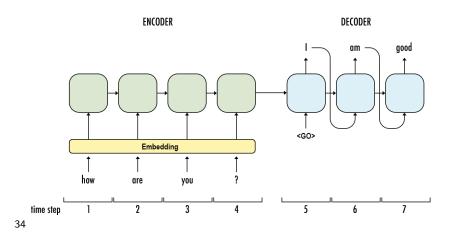
Spike mutations in lineages


³²https://www.nature.com/articles/s41392-021-00644-x

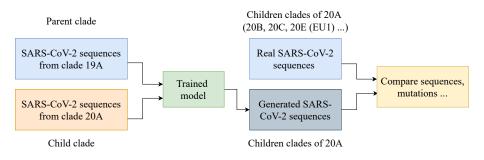
A D N A B N A B N A B N

36 / 43

э


Nextclade clades

33


³³ https://clades.nextstrain.org/		• 🗆		€ no	10
Anup Kumar (Bioinformatics, Freiburg)	Machine learning, Galaxy and more		26th October 2021	37 /	43

Sequence to sequence learning

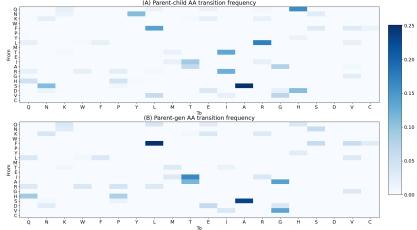
³⁴ https://towardsdatascience.com/sequence-to-sequence-model-introduction-and-concepts-44d9b41cd42d < 🚊 🕨 🚊 🛷 🔍

Sequence to sequence learning with SARS-CoV-2 sequences

- 4 回 ト 4 ヨ ト 4 ヨ ト

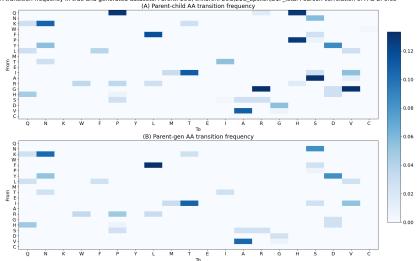
Generative Adversarial Networks (GANs)

- Generator generates data (sequences)
- Generator network sequence to sequence encoder-decoder network
- Discriminator discriminates between real and generated data (sequences)
- Discriminator network sequential network to predict either real (true) or generated (false)
- Generator and Discriminator make each other better over training iteration
- Applications improve astronomical images ³⁵, reconstruct 3D model of object from images ³⁶, age face photographs ³⁷, language translation³⁸, ...


³⁵https://arxiv.org/pdf/1702.00403.pdf

³⁶http://3dgan.csail.mit.edu/

³⁷https://arxiv.org/pdf/1702.01983.pdf


³⁸https://arxiv.org/pdf/1704.06933.pdf

Prediction of protein evolution (for children clades of 20B)

AA transition frequency in true and generated datasets. Parent: 20B, children: 20I_Alpha,20F,20D,21G_Lambda,21H. Pearson correlation of A & B: 0.68 (A) Parent-child AA transition frequency

Prediction of protein evolution (for children clades of 20C)

AA transition frequency in true and generated datasets. Parent: 20C, children: 20G,21C_Epsilon,21F_lota. Pearson correlation of A & B: 0.65

Thank you for your attention. Questions?

문 🛌 🖻