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Agenda

@ Basics of machine learning

@ Machine learning in Galaxy

@ Ongoing machine learning projects - Jupyterlab editor for ML and
predicting protein evolution in SARS-COV2 sequences using deep
learning
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Basics of Machine learning
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Machine learning (ML)

@ ML - computer program that learns rules from data

@ Use rules to distinguish patterns

@ Rules are mathematical functions

@ Learn on existing (training) data, predict unknown outputs (of test
data)

@ ML algorithms work on numbers and not text or characters

@ Example task: handwritten digit recognition
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General applications of ML
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Types of ML

Image .
Discovery Classification Customer Retention

Identity Fraud
'Detection Diagnostics

Feature
Elicitation
Dimensionality

Reduction

Recommender Advertising Popularity
jon

Unsupervised Supervised Predictior
Learning Learning
Weather
. Forecasting
Machine
Le arn | n g Forecasting

Populati
Growth

Estimating

ustomer
Segmentation
Life expectancy

Prediction

Reinforcement
Learning

‘Skill Acquisition

Robot Navigation Learning Tasks,

3https://skiI||><.cc>m/|ist—c;t’-machine-learning-aIgcrithms/ =} =) - = £ DA

(Bioinformatics, Freib Machine learnin



Supervised learning (Classification)

@ Labeled data

o Features (gender, height, weight, index)

o Labels/classes/targets/output (status)

Gender Height Weight Index Status
0 Male 174 96 4 Obesity
1 Male 189 87 2 Normal
2 Female 185 110 4 Obesity
3 Female 195 104 3 Overweight
4 Male 149 61 3 Overweight
5 Male 189 104 3 Overweight
6 Male 147 92 5 Extreme Obesity
7 Male 154 111 5 Extreme Obesity
8 Male 174 90 3 Overweight
9 Female 169 103 4 Obesity

4

4https://www.kaggle.':om/yerseve|r/500—pe:|rson-gende:lr-height-weight-bodymassindex
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Supervised learning (Regression)

@ Labeled data

o Class is a real number instead of a category

@ Example: house price prediction

yn

price (S)

v

square feet (sq.ft.) X
5

5https://finaIagito.github.io/2016/08/17/The:-Linar—Regression-The-Fi|rst-Step—0f-Machine-Learning/
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Pipeline for supervised learning
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6https://subscription.packtpub.com/book/big.data.and.business.intel|igence/9781789345070/l/ch01|vl15ec12/m|-tasks
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Algorithms for supervised learning

Linear models

Support vector machines
Decision trees

Ensemble models

Neural networks
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Linear models

@ Learn straight line decision boundary
@ Easy to use and fast

@ Don't learn non-linear features

"https:/ /stats.stackexchange.com /questions /436827 /why-does-linear-non-logistic-regression-work-as-a-linear-classifier-what-
classi
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Non-linear models
@ Many times, patterns can only be separated by non-linear boundaries
@ Linear models are not sufficient
@ Need algorithms to learn non-linear features in data

@ Examples: support vector machines, k-nearest neighbours, decision
trees, ensemble methods ...

8https://scikit-learn.org/stable/auto.examples/svm/plot.svm_nonlinear.html
Anup Kumar (Bioinformatics, Freiburg) Machine learning, Galaxy and more 26th October 2021 12 /43



Unsupervised learning
@ Datasets have no labels - no supervision
@ Extract structures in datasets
@ Unsupervised approaches - clustering, dimensionality reduction, ...

Original unclustered data Clustered data

9 https://deepai.org/machine-learning-glossary-and-terms/unsupervised-learning
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Clustering

@ Group data points based on similarity
@ Similarity is determined by a notion of closeness
@ lterative process

@ Types of clustering: k-means, hierarchical clustering, density-based
spatial clustering of applications with noise (DBSCAN)

*lﬁ | :xw)‘é
# & &
ANINE SN
B 8 8
¥ ¥O¥
10

10http://dendlroid.sk/2011/05/09/k-means-clustering/
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Dimensionality reduction

@ Number of dimensions >> number of samples

@ High dimensional dataset - data points become farther from one
another

@ Curse of dimensionality - hard to generalise on all combinations of a
large number of dimensions

@ May lead to high-variance or overfitting

@ Remedy - remove noisy or insignificant dimensions

@ Approaches: principal component analysis (PCA), autoencoders
(Neural network)

11

Hhttps://cofactorgenomics.com /curse-of-dimensionality-wk-16/
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Artificial neural networks

@ Inspired by biological neurons
@ Dendrites and axons carry signals

@ In an artificial neural network, neural network edges carry data to and
from neurons

impulses carried xo wo
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12 https:/ /towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-part-1-2b90b87795bc
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Artificial neural networks

Neural network has an architecture

Layers - input, hidden, output,

Loss function - mean squared error, cross-entropy loss.
Optimiser - adam, adadelta, rmsprop ...

Types of layers - recurrent, dropout, convolutional ...

Types of activations - tanh, sigmoid, softmax ...
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Bhttps:/ /www.datacamp.com/community/tutorials/neural-network-models-r
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Artificial neural networks

Input layer - receive data

Number of neurons = number of features

Hidden layer - number of neurons or layers not fixed, depends on the
problem being solved. Responsible for learning complex patterns

Output layer - compute output as a class or real number

. Yes/No

Decision

Age O s Neural Network “\“
Company O

Salary O
Education O o
Final
Designation O
1 O\

o O

Y https: / /www.datacamp.com/community/tutorials/neural-network-models-r
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General recommendations for using ML algorithms

@ Preprocess datasets - outliers, incorrect labels, standardise features by
scaling, encoding, imputing missing values

Split datasets - train, test, validation and K-fold cross-validation
Use right algorithm - start with simple and then move to complex
Fix data imbalance

Tune hyperparameters

Look for overfitting

Evaluate accuracy for each class (for classification)
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Machine learning in Galaxy
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Galaxy Europe

Online platform for numerous (>2000) scientific tools running on
large compute resources including GPUs as well as large storage

Accelerates scientific, especially bioinformatics research
Public infrastructure
Open-source community, contributors across the globe

Over 200 tutorials (hands-on materials) showing usage of tools in
different scientific analyses 1°

15https://training.galaxyproject.org/
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Galaxy Europe
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ML in Galaxy

PLOS COMPUTATIONAL BIOLOGY

RESEARCH ARTICLE
Galaxy-ML: An accessible, reproducible, and
scalable machine learning toolkit for

biomedicine

Qiang Gu™?, Anup Kumar?, Simon Bray: Allison Creason»'?,

Alireza Khanteymoori*, Vahid Jalili ', Bjérn Griining»*, Jeremy Goecks '

1 Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregen, United

States of America, 2 The Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon,
United States of America, 3 Bioinformatics Group, Depariment of Computer Science, University of Freiburg,

m Freiburg, Germany

* goecks| @ chsu.edu
Check for
updates

Abstract

Supervised machine learning is an essential but difficult to use approach in biomedical data
B orenaccEss analysis. The Galaxy-ML toolkit (https://galaxyproject.org/community/machine-learning/)

) makes supervised machine leaming more accessible to biomedical scientists by enabling
Citation: Gu 0, Kumar A, Bray S, Creasan A, N 3
Knantzymoari A, Jalli V, ot al (2021) GalaymL: e to perform end-to-end reproducible machine learning analyses at large scale using
An accessible, reproducible, and scalable machine only a web browser. Galaxy-ML extends Galaxy (hitps://galaxyproject.org), a biomedical
Jearning tnolkit for biomedicine. PLoS Comput Biol  eomputational workbench used by tens of thousands of scientists across the world, with a

;?é?]f;;mu' FipsiSoLorgISHRUTEL  gyjive of tools for all aspects of supervised machine leaming.
17

https://doi.org/10.1371 /journal
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ML in Galaxy

@ 20 - 30 ML tools powered by scikit-learn and tensorflow

@ ML tools - classifiers, regressors, data preprocessors, visualizations,
hyperparameter tuners, pipeline builders

@ Workflow of tools

e Long running ML training on Galaxy infrastructure (using multiple
CPUs, GPUs)

Intro_To_FNN (imported from uploaded file)
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ML tutorials in Galaxy

Statistics and machine learning
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Our projects with machine learning
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Galaxy Jupyterlab editor for ML

@ Jupyter notebook - popular editor
@ Scientific computing, data science, machine learning, learn to code ...
@ Simple and fast way to create prototypes

No need for any package installation

°
@ Easy to share any analysis
°

Runs on web
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Galaxy Jupyterlab 20
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Features of Galaxy Jupyterlab

e Base container - jupyter/tensorflow-notebook:latest 2

@ CUDA and cuDNN packages for nvidia GPUs, tensorflow for GPU,
pre-installed ML and DL packages

o Create, share and reuse ML/DL models - ONNX 22

o Git integration

o Workflow of notebooks - Elyra Al 23

@ Connect to Galaxy histories, datasets using bioblend 4

@ Miscellaneous - dashboards for CPU, GPU, memory utilization,

collapse/expand sections, notebook as voila ...

e Docker image %°

2Lhttps: //hub.docker.com/r/jupyter /tensorflow-notebook /
2https: / /onnx.ai/

2Bhttps: //github.com /elyra-ai/elyra

?*https: / /bioblend.readthedocs.io/en /latest/

s https://github.com/anuprulez/ml-jupyter-notebook
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Architecture of Galaxy Jupyterlab

’ Docker container ‘

v
’ Interactive tool ‘
v
l—{ Jupyterlab notebook }7
Execute notebook on Execute long running Run all notebook's cells in
CPU/GPU notebook as a Galaxy job Galaxy as a job
| |
’ Custom function Collect trained model,
J numpy atrays, lists in
’ Another Galaxy tool Galaxy history
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Prediction of protein evolution (amino acid substitutions)
in SARS-COV?2 sequences

Spike protein and amino acid (AA) mutations
Nextclade clades
Sequence to sequence learning

Generative adversarial networks (GANs)

Comparison of true and generated SARS-CoV-2 AA sequences
@ Substitutions from generated AA sequences (future substitutions)?
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Spike protein (S)

a SARS-CoV-2 genome (bp)
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26

@ Non-structural and structural proteins

26 https://www.nature.com/articles/s41586-020-2286-9
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Spike protein (S)

__ Spike Protein (S)

Membrane Protein (M)
_— Envelope Protein (E)

Nucleoprotein (N)

Human ACE2
Receptor

27
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Spike protein (S)

Binds to the host cell

Mutations may impact infectivity, transmissibility
D614G: enhances viral replication 28

N439K: enhances the binding affinity for the ACE2 receptor and
reduces the neutralizing activity of antibodies 2°

Y453F: increased ACE2-binding affinity 30

2 https:/ /www.nature.com/articles/s41586-020-2895-3, https://covariants.org/variants/20B.S.732A
2https: / /www.nature.com/articles/s41579-021-00573-0
30https: //www.nature.com /articles/s41579-021-00573-0
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Frequency of spike mutations (substitutions and deletions)
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@ 426,623 genomes, 5106 substitutions

31https: //www.nature.com/articles/s41579-021-00573-0 ] F =
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Spike mutations in lineages
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32 https://www.nature.com/articles/s41392-021-00644-x o =il = = = 9
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Nextclade clades

@ 201 (aipha, v1)
@ 203 (Gamma, v3)
@ 20F

208 @200
@ 21t (Theta)
@ 216 (Lambda)

@+

200 ) @ 201 (Beta, v2)
19 @) @ e @ @ 20c

@ 2:c Epsiton)

20E (EUY)
@ @ 21F (ota)
@ 214 (Deita)
@ 215 (xappa)
@200 Ew
33
33 https://clades.nextstrain.org/ =] =) - = £ DA
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Sequence to sequence learning

ENCODER DECODER
am good
<GO>
( Embedding )
how are you ?
L L I I ] L L I |
time step 1 2 3 4 5 6 7

34

34 https:/ /towardsdatascience.com /sequence-to-sequence-model-introduction-and-concepts-44d9b41cd42d
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Sequence to sequence learning with SARS-CoV-2

sequences

Parent clade

SARS-CoV-2 sequences

Child clade

Anup Kumar (Bioinformatics, Freiburg)

from clade 19A l

SARS-CoV-2 sequences
from clade 20A

Trained
model

Children clades of 20A
(20B, 20C, 20E (EU1) ...)

Real SARS-CoV-2
sequences

\—’ Compare sequences,

L

Generated SARS-
CoV-2 sequences

4,—) mutations ...

Children clades of 20A
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Generative Adversarial Networks (GANs)

o Generator - generates data (sequences)

@ Generator network - sequence to sequence encoder-decoder network

@ Discriminator - discriminates between real and generated data
(sequences)

@ Discriminator network - sequential network to predict either real
(true) or generated (false)

@ Generator and Discriminator - make each other better over training
Iteration

@ Applications - improve astronomical images 3°, reconstruct 3D model

of object from images 3¢, age face photographs 37, language

translation38, ...

3Shttps: //arxiv.org/pdf/1702.00403.pdf
30http: //3dgan.csail. mit.edu/

37https: / /arxiv.org/pdf/1702.01983.pdf
38https: //arxiv.org/pdf/1704.06933.pdf
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Prediction of protein evolution (for children clades of 20B)

AA transition frequency in true and generated datasets. Parent: 20B, children: 20I_Alpha,20F,20D,21G_Lambda,21H. Pearson correlation of A & B: 0.68

(A) Parent-child AA transition frequency
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Prediction of protein evolution (for children clades of 20C)

AA transition frequency in true and generated datasets. Parent: 20C, children: 20G,21C_Epsilon,21F_lota. Pearson correlation of A & B: 0.65

(A) Parent-child AA transition frequency
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Thank you for your attention. Questions?

Anup Kumar (Bioinformatics, Freiburg) Machine learning, Galaxy and more



