Algebraisk talteori
Om utbildningen
Algebraisk talteori är den del av talteorin som använder metoder från algebra för att svara på frågor om heltal i allmänhet och talkroppar i synnerhet. Ämnet har inspirerat det Abelprisbelönade Langlandsprogrammet och är grundläggande inom flera delar av algebraisk geometri. Ett fundamentalt objekt i algebraisk talteori är algebraiska heltal som bygger på relationen mellan vanliga heltal och rationella tal. Men i de flesta talkroppar slutar unik faktorisering av heltal som en produkt av primtal att fungera.
I den här kursen kommer du att studera algebraiska heltal och bråkideal som fungerar som ”ideala tal” i talkroppar. Du kommer också att lära dig om hur mycket faktorisering av ideal och heltal kan avvika från varandra.
Behörigheter och urval
Behörighet
Utöver grundläggande behörighet krävs kunskaper motsvarande 90 hp i matematik och grundläggande Galoisteori motsvarande delar av kursen MMA310 Galoisteori. Inom Galoisteorin krävs kunskap om separabla kroppsutvidgningar, Galoisteorins huvudsats, existensen av det algebraiska höljet för de rationella talen, och inbäddningarna av talkroppar däri.
Urval
Platsgaranti
Så är det att plugga
Lokaler
Matematiska vetenskaper är en gemensam institution
Chalmers/Göteborgs universitet. Din undervisning sker i Matematiska
vetenskapers rymliga och ljusa lokaler på Chalmers campus Johanneberg, där det finns föreläsningssalar, datorsalar och grupprum. Här finns också studentlunchrum och läsesal, liksom studievägledare och studieexpedition.