Breadcrumb

Applied Machine Learning

Course
DIT867
Master’s level
7.5 credits (ECTS)
Study pace
50%
Time
Day
Location
Göteborg
Study form
Campus
Language
English
Duration
-
Application period
-
Application code
GU-86054
Tuition
Full education cost: 19 253 SEK
First payment: 19 253 SEK

No fees are charged for EU and EEA citizens, Swedish residence permit holders and exchange students.

More information about tuition fees

Application not yet open

Study pace
50%
Time
Day
Location
Göteborg
Study form
Campus
Language
English
Duration
-
Application period
-
Application code
GU-86002
Tuition
Full education cost: 19 253 SEK
First payment: 19 253 SEK

No fees are charged for EU and EEA citizens, Swedish residence permit holders and exchange students.

More information about tuition fees

About

The course gives an introduction to machine learning techniques and theory, with a focus on its use in practical applications. 

During the course, a selection of topics will be covered in supervised learning, such as linear models for regression and classification, or nonlinear models such as neural networks, and in unsupervised learning such as clustering.

The use cases and limitations of these algorithms will be discussed, and their implementation will be investigated in programming assignments. Methodological questions pertaining to the evaluation of machine learning systems will also be discussed, as well as some of the ethical questions that can arise when applying machine learning technologies.

There will be a strong emphasis on the real-world context in which machine learning systems are used. The use of machine learning components in practical applications will be exemplified, and realistic scenarios will be studied in application areas such as ecommerce, business intelligence, natural language processing, image processing, and bioinformatics. The importance of the design and selection of features, and their reliability, will be discussed.

Prerequisites and selection

Entry requirements

To be eligible to the course, the student should have a Bachelor's degree in any subject, or have successfully completed 90 credits of studies in computer science, software engineering, or equivalent. Specifically, the course requires:

- 7\.5 credits programming,
- 7\.5 credits introduction to data science or AI, such as DIT852 or DIT405,
- 7\.5 credits calculus or mathematical modeling (such as DIT856),
- 7\.5 credits probability theory, statistics, or mathematical statistics, such as DIT862. Alternatively have taken both of the following two courses: DIT847 and DIT278 (or equivalent)

Applicants must prove knowledge of English: English 6/English B or the equivalent level of an internationally recognized test, for example TOEFL, IELTS.

Selection

Selection is based upon the number of credits from previous university studies, maximum 285 credits