Image
3D Bioprint
3D bioprinted tissue by Peter Apelgren
Breadcrumb

Peter Apelgren - Promoting the Clinical Relevance of 3D Bioprinting

Published

On February 25, Peter Apelgren defended his thesis for Medicine Doctorate at Sahlgrenska Academy, Institute of Clinical Sciences, Department of Plastic Surgery

Image
Peter Apelgren
Peter Apelgren, Plastic Surgeon Department of Plastic Surgery, Sahlgrenska University Hospital
Photo: Åsa Bell

Link directly to the thesis

The dissertation will be held in English

The summary from the abstract in his thesis

This thesis focuses on the development of methodologies enabling the reconstruction of autologous, functional, and long-term-stable cartilage-like tissue using 3D bioprinting technology and animal experiments. The stability, resilience, and in vivo viability of the printed cells and tissue vascularization, as well as the observed immunogenicity and safety, represent the main issues evaluated and discussed in this thesis. Furthermore, the mechanical properties of the applied biomaterials are evaluated in detail.

Study I Background: This study quantitatively assessed the proliferative capacity of chondrocytes in the presence and absence of stem cells in the 3D bioprinting setting. Results: We observed significant increases in the number of chondrocytes and cluster formations during the study period. Compared with pure human nasal chondrocyte (hNC) group, we identified a significant additional proliferative effect in the group containing both hNCs and stem cells, and histologic analysis confirmed the expected production of collagen type II in the extracellular matrix, as well as the distribution of glycosaminoglycans in the cartilage-like tissue. Additionally, fluorescence in situ hybridization analysis confirmed that the chondrocytes were of human origin, and their male phenotype verified the male chondrocyte-donor source.

Study II Background: In this study, we evaluated the results of subcutaneous implantation of 3D-bioprinted constructs mixed with human chondrocytes and stem cells over the course of 10 months. Results: We observed no signs of necrosis, tumors, ossification, or other adverse effects. Moreover, the constructs remained well-preserved, and histologic analyses showed thriving, proliferating chondrocytes in cartilage-like formations.

Study III Background: This study mapped the vascularization of gridded 3D-bioprinted constructs. Results: Perfusion data from magnetic resonance imaging revealed progressive vascularization inside of grid holes that were confirmed as being filled with blood vessels connected to host circulation according to histologic analysis. Additionally, immunohistochemical analysis of endothelial cells confirmed the vascular arrangement, with collagen II production further indicating chondrocyte proliferation and cartilage formation.

Study IV Background: In this study, we evaluated the biocompatibility (according to ISO standards) and mechanical properties of tunicate-derived nanocellulose (TNC) as a novel biomaterial. Results: We determined TNC biocompatibility as equivalent to that of expanded polytetrafluoroethylene while also exhibiting excellent mechanical properties. Keywords 3D bioprinting, cartilage, chondrocytes, stem cells, tissue engineering, nanocellulose, hydrogel, bioink, vascularization, biocompatibility

Navigate to video: Hur 3D-bioprinting av ett öra går till
Video (00:32)
Hur 3D-bioprinting av ett öra går till
By: Paul Gatenholm, professor Chalmers Tekniska högskola

 

INFORMATION ABOUT THE DISSERTATION

Supervisor: Lars Kölby
Co-Supervisor:  Stina Simonsson and Karin Säljö

Opponent:  Jos Malda, University Medical Center Utrecht, Utrecht, The Netherlands

Examining Committee: Kristian Samuelsson, Eva Angenete och Mikko Lammi